Cargando…
Design and evaluation of chalconeimine derivatives as α-amylase inhibitors
Alpha-amylase is a known target for type II diabetes. Therefore, it is of interest to design α-amylase inhibitors based on hydrazone scaffold. The structure of these hybrids was confirmed by spectroscopic analysis (IR, (1)H-and (13)C NMR). All the compounds have potential inhibitory properties as sh...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704331/ https://www.ncbi.nlm.nih.gov/pubmed/31485138 http://dx.doi.org/10.6026/97320630015523 |
Sumario: | Alpha-amylase is a known target for type II diabetes. Therefore, it is of interest to design α-amylase inhibitors based on hydrazone scaffold. The structure of these hybrids was confirmed by spectroscopic analysis (IR, (1)H-and (13)C NMR). All the compounds have potential inhibitory properties as shown by in vitro α-amylase inhibition activity. The compound 5-((1Z,3Z)-3-(benzo[d][1,3]dioxol-5-yl)-3-((2-chloropyridin-3- yl)imino)prop-1-en-1-yl)-2-(difluoromethoxy)phenol(4a) in 100 µg/mL concentration showed a high inhibition of 85.23%. In vitro α-amylase inhibition was further supported by docking studies of compound against the active site of pig pancreatic α-amylase (PDB ID: 3L2M). Docking studies revealed that the bonding interactions found between the compound and human pancreatic α-amylase are similar to those responsible for α-amylase inhibition by acarbose. |
---|