Cargando…

Analysis of an improved Cyanophora paradoxa genome assembly

Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model g...

Descripción completa

Detalles Bibliográficos
Autores principales: Price, Dana C, Goodenough, Ursula W, Roth, Robyn, Lee, Jae-Hyeok, Kariyawasam, Thamali, Mutwil, Marek, Ferrari, Camilla, Facchinelli, Fabio, Ball, Steven G, Cenci, Ugo, Chan, Cheong Xin, Wagner, Nicole E, Yoon, Hwan Su, Weber, Andreas P M, Bhattacharya, Debashish
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704402/
https://www.ncbi.nlm.nih.gov/pubmed/31098614
http://dx.doi.org/10.1093/dnares/dsz009
_version_ 1783445498978369536
author Price, Dana C
Goodenough, Ursula W
Roth, Robyn
Lee, Jae-Hyeok
Kariyawasam, Thamali
Mutwil, Marek
Ferrari, Camilla
Facchinelli, Fabio
Ball, Steven G
Cenci, Ugo
Chan, Cheong Xin
Wagner, Nicole E
Yoon, Hwan Su
Weber, Andreas P M
Bhattacharya, Debashish
author_facet Price, Dana C
Goodenough, Ursula W
Roth, Robyn
Lee, Jae-Hyeok
Kariyawasam, Thamali
Mutwil, Marek
Ferrari, Camilla
Facchinelli, Fabio
Ball, Steven G
Cenci, Ugo
Chan, Cheong Xin
Wagner, Nicole E
Yoon, Hwan Su
Weber, Andreas P M
Bhattacharya, Debashish
author_sort Price, Dana C
collection PubMed
description Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.
format Online
Article
Text
id pubmed-6704402
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-67044022019-08-27 Analysis of an improved Cyanophora paradoxa genome assembly Price, Dana C Goodenough, Ursula W Roth, Robyn Lee, Jae-Hyeok Kariyawasam, Thamali Mutwil, Marek Ferrari, Camilla Facchinelli, Fabio Ball, Steven G Cenci, Ugo Chan, Cheong Xin Wagner, Nicole E Yoon, Hwan Su Weber, Andreas P M Bhattacharya, Debashish DNA Res Full Papers Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage. Oxford University Press 2019-08 2019-05-16 /pmc/articles/PMC6704402/ /pubmed/31098614 http://dx.doi.org/10.1093/dnares/dsz009 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Price, Dana C
Goodenough, Ursula W
Roth, Robyn
Lee, Jae-Hyeok
Kariyawasam, Thamali
Mutwil, Marek
Ferrari, Camilla
Facchinelli, Fabio
Ball, Steven G
Cenci, Ugo
Chan, Cheong Xin
Wagner, Nicole E
Yoon, Hwan Su
Weber, Andreas P M
Bhattacharya, Debashish
Analysis of an improved Cyanophora paradoxa genome assembly
title Analysis of an improved Cyanophora paradoxa genome assembly
title_full Analysis of an improved Cyanophora paradoxa genome assembly
title_fullStr Analysis of an improved Cyanophora paradoxa genome assembly
title_full_unstemmed Analysis of an improved Cyanophora paradoxa genome assembly
title_short Analysis of an improved Cyanophora paradoxa genome assembly
title_sort analysis of an improved cyanophora paradoxa genome assembly
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704402/
https://www.ncbi.nlm.nih.gov/pubmed/31098614
http://dx.doi.org/10.1093/dnares/dsz009
work_keys_str_mv AT pricedanac analysisofanimprovedcyanophoraparadoxagenomeassembly
AT goodenoughursulaw analysisofanimprovedcyanophoraparadoxagenomeassembly
AT rothrobyn analysisofanimprovedcyanophoraparadoxagenomeassembly
AT leejaehyeok analysisofanimprovedcyanophoraparadoxagenomeassembly
AT kariyawasamthamali analysisofanimprovedcyanophoraparadoxagenomeassembly
AT mutwilmarek analysisofanimprovedcyanophoraparadoxagenomeassembly
AT ferraricamilla analysisofanimprovedcyanophoraparadoxagenomeassembly
AT facchinellifabio analysisofanimprovedcyanophoraparadoxagenomeassembly
AT ballsteveng analysisofanimprovedcyanophoraparadoxagenomeassembly
AT cenciugo analysisofanimprovedcyanophoraparadoxagenomeassembly
AT chancheongxin analysisofanimprovedcyanophoraparadoxagenomeassembly
AT wagnernicolee analysisofanimprovedcyanophoraparadoxagenomeassembly
AT yoonhwansu analysisofanimprovedcyanophoraparadoxagenomeassembly
AT weberandreaspm analysisofanimprovedcyanophoraparadoxagenomeassembly
AT bhattacharyadebashish analysisofanimprovedcyanophoraparadoxagenomeassembly