Cargando…
An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets
BACKGROUND: Host immune response is coordinated by a variety of different specialized cell types that vary in time and location. While host immune response can be studied using conventional low-dimensional approaches, advances in transcriptomics analysis may provide a less biased view. Yet, leveragi...
Autores principales: | Torang, Arezo, Gupta, Paraag, Klinke, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704630/ https://www.ncbi.nlm.nih.gov/pubmed/31438843 http://dx.doi.org/10.1186/s12859-019-2994-z |
Ejemplares similares
-
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
An Unsupervised Strategy for Identifying Epithelial-Mesenchymal Transition State Metrics in Breast Cancer and Melanoma
por: Klinke, David J., et al.
Publicado: (2020) -
Parameter optimization of logistic regression classifiers
por: Sherwin, Jason S, et al.
Publicado: (2013) -
Detection of functional and structural brain alterations in female schizophrenia using elastic net logistic regression
por: Wu, Ying, et al.
Publicado: (2021) -
GENRE (GPU Elastic-Net REgression): A CUDA-Accelerated Package for Massively Parallel Linear Regression with Elastic-Net Regularization
por: Khan, Christopher, et al.
Publicado: (2020)