Cargando…
Use of machine learning to analyse routinely collected intensive care unit data: a systematic review
BACKGROUND: Intensive care units (ICUs) face financial, bed management, and staffing constraints. Detailed data covering all aspects of patients’ journeys into and through intensive care are now collected and stored in electronic health records: machine learning has been used to analyse such data in...
Autores principales: | Shillan, Duncan, Sterne, Jonathan A. C., Champneys, Alan, Gibbison, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704673/ https://www.ncbi.nlm.nih.gov/pubmed/31439010 http://dx.doi.org/10.1186/s13054-019-2564-9 |
Ejemplares similares
-
Neonatal mortality prediction with routinely collected data: a machine learning approach
por: Batista, André F. M., et al.
Publicado: (2021) -
Machine Learning in Colorectal Cancer Risk Prediction from Routinely Collected Data: A Review
por: Burnett, Bruce, et al.
Publicado: (2023) -
Developing Machine Learning Algorithms on Routinely Collected Administrative Health Data - Lessons from Ontario, Canada.
por: Harish, Vinyas, et al.
Publicado: (2022) -
Towards a decision support tool for intensive care discharge: machine learning algorithm development using electronic healthcare data from MIMIC-III and Bristol, UK
por: McWilliams, Christopher J, et al.
Publicado: (2019) -
Supporting Pharmacovigilance Signal Validation and Prioritization with Analyses of Routinely Collected Health Data: Lessons Learned from an EHDEN Network Study
por: Gauffin, Oskar, et al.
Publicado: (2023)