Cargando…
Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations
[Image: see text] We explore the stability, electronic properties, and quantum capacitance of doped/co-doped graphene with B, N, P, and S atoms based on first-principles methods. B, N, P, and S atoms are strongly bonded with graphene, and all of the relaxed systems exhibit metallic behavior. While g...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705244/ https://www.ncbi.nlm.nih.gov/pubmed/31460448 http://dx.doi.org/10.1021/acsomega.9b01359 |
Sumario: | [Image: see text] We explore the stability, electronic properties, and quantum capacitance of doped/co-doped graphene with B, N, P, and S atoms based on first-principles methods. B, N, P, and S atoms are strongly bonded with graphene, and all of the relaxed systems exhibit metallic behavior. While graphene with high surface area can enhance the double-layer capacitance, its low quantum capacitance limits its application in supercapacitors. This is a direct result of the limited density of states near the Dirac point in pristine graphene. We find that the triple N and S doping with single vacancy exhibits a relatively stable structure and high quantum capacitance. It is proposed that they could be used as ideal electrode materials for symmetry supercapacitors. The advantages of some co-doped graphene systems have been demonstrated by calculating quantum capacitance. We find that the N/S and N/P co-doped graphene with single vacancy is suitable for asymmetric supercapacitors. The enhanced quantum capacitance contributes to the formation of localized states near the Dirac point and/or Fermi-level shifts by introducing the dopant and vacancy complex. |
---|