Cargando…

Twelve quick tips for designing sound dynamical models for bioprocesses

Because of the inherent complexity of bioprocesses, mathematical models are more and more used for process design, control, optimization, etc. These models are generally based on a set of biochemical reactions. Model equations are then derived from mass balance, coupled with empirical kinetics. Biol...

Descripción completa

Detalles Bibliográficos
Autores principales: Mairet, Francis, Bernard, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705754/
https://www.ncbi.nlm.nih.gov/pubmed/31437146
http://dx.doi.org/10.1371/journal.pcbi.1007222
Descripción
Sumario:Because of the inherent complexity of bioprocesses, mathematical models are more and more used for process design, control, optimization, etc. These models are generally based on a set of biochemical reactions. Model equations are then derived from mass balance, coupled with empirical kinetics. Biological models are nonlinear and represent processes, which by essence are dynamic and adaptive. The temptation to embed most of the biology is high, with the risk that calibration would not be significant anymore. The most important task for a modeler is thus to ensure a balance between model complexity and ease of use. Since a model should be tailored to the objectives, which will depend on applications and environment, a universal model representing any possible situation is probably not the best option.