Cargando…

Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy

Advanced glycation end products (AGE) play a causative role in the development of aberrant phenotypes of intraglomerular mesangial cells, contributing to acute/chronic glomerulonephritis. The aim of this study was to explore mechanistic effects of the flavonoid chrysin present in bee propolis and he...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Eun-Jung, Kang, Min-Kyung, Kim, Yun-Ho, Kim, Dong Yeon, Oh, Hyeongjoo, Kim, Soo-Il, Oh, Su Yeon, Kang, Young-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705957/
https://www.ncbi.nlm.nih.gov/pubmed/30634545
http://dx.doi.org/10.3390/nu11010127
_version_ 1783445643751063552
author Lee, Eun-Jung
Kang, Min-Kyung
Kim, Yun-Ho
Kim, Dong Yeon
Oh, Hyeongjoo
Kim, Soo-Il
Oh, Su Yeon
Kang, Young-Hee
author_facet Lee, Eun-Jung
Kang, Min-Kyung
Kim, Yun-Ho
Kim, Dong Yeon
Oh, Hyeongjoo
Kim, Soo-Il
Oh, Su Yeon
Kang, Young-Hee
author_sort Lee, Eun-Jung
collection PubMed
description Advanced glycation end products (AGE) play a causative role in the development of aberrant phenotypes of intraglomerular mesangial cells, contributing to acute/chronic glomerulonephritis. The aim of this study was to explore mechanistic effects of the flavonoid chrysin present in bee propolis and herbs on actin dynamics, focal adhesion, and the migration of AGE-exposed mesangial cells. The in vitro study cultured human mesangial cells exposed to 33 mM glucose and 100 μg/mL AGE-bovine serum albumin (AGE-BSA) for up to 5 days in the absence and presence of 1–20 μM chrysin. The in vivo study employed db/db mice orally administrated for 10 weeks with 10 mg/kg chrysin. The presence of ≥10 μM chrysin attenuated mesangial F-actin induction and bundle formation enhanced by AGE. Chrysin reduced the mesangial induction of α-smooth muscle actin (α-SMA) by glucose, and diminished the tissue α-SMA level in diabetic kidneys, indicating its blockade of mesangial proliferation. The treatment of chrysin inhibited the activation of vinculin and paxillin and the induction of cortactin, ARP2/3, fascin-1, and Ena/VASP-like protein in AGE-exposed mesangial cells. Oral administration of chrysin diminished tissue levels of cortactin and fascin-1 elevated in diabetic mouse kidneys. Mesangial cell motility was enhanced by AGE, which was markedly attenuated by adding chrysin to cells. On the other hand, chrysin dampened the induction of autophagy-related genes of beclin-1, LC3 I/II, Atg3, and Atg7 in mesangial cells exposed to AGE and in diabetic kidneys. Furthermore, chrysin reduced the mTOR activation in AGE-exposed mesangial cells and diabetic kidneys. The induction of mesangial F-actin, cortactin, and fascin-1 by AGE was deterred by the inhibition of autophagy and mTOR. Thus, chrysin may encumber diabetes-associated formation of actin bundling and focal adhesion and mesangial cell motility through disturbing autophagy and mTOR pathway.
format Online
Article
Text
id pubmed-6705957
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67059572019-09-09 Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy Lee, Eun-Jung Kang, Min-Kyung Kim, Yun-Ho Kim, Dong Yeon Oh, Hyeongjoo Kim, Soo-Il Oh, Su Yeon Kang, Young-Hee Nutrients Article Advanced glycation end products (AGE) play a causative role in the development of aberrant phenotypes of intraglomerular mesangial cells, contributing to acute/chronic glomerulonephritis. The aim of this study was to explore mechanistic effects of the flavonoid chrysin present in bee propolis and herbs on actin dynamics, focal adhesion, and the migration of AGE-exposed mesangial cells. The in vitro study cultured human mesangial cells exposed to 33 mM glucose and 100 μg/mL AGE-bovine serum albumin (AGE-BSA) for up to 5 days in the absence and presence of 1–20 μM chrysin. The in vivo study employed db/db mice orally administrated for 10 weeks with 10 mg/kg chrysin. The presence of ≥10 μM chrysin attenuated mesangial F-actin induction and bundle formation enhanced by AGE. Chrysin reduced the mesangial induction of α-smooth muscle actin (α-SMA) by glucose, and diminished the tissue α-SMA level in diabetic kidneys, indicating its blockade of mesangial proliferation. The treatment of chrysin inhibited the activation of vinculin and paxillin and the induction of cortactin, ARP2/3, fascin-1, and Ena/VASP-like protein in AGE-exposed mesangial cells. Oral administration of chrysin diminished tissue levels of cortactin and fascin-1 elevated in diabetic mouse kidneys. Mesangial cell motility was enhanced by AGE, which was markedly attenuated by adding chrysin to cells. On the other hand, chrysin dampened the induction of autophagy-related genes of beclin-1, LC3 I/II, Atg3, and Atg7 in mesangial cells exposed to AGE and in diabetic kidneys. Furthermore, chrysin reduced the mTOR activation in AGE-exposed mesangial cells and diabetic kidneys. The induction of mesangial F-actin, cortactin, and fascin-1 by AGE was deterred by the inhibition of autophagy and mTOR. Thus, chrysin may encumber diabetes-associated formation of actin bundling and focal adhesion and mesangial cell motility through disturbing autophagy and mTOR pathway. MDPI 2019-01-09 /pmc/articles/PMC6705957/ /pubmed/30634545 http://dx.doi.org/10.3390/nu11010127 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lee, Eun-Jung
Kang, Min-Kyung
Kim, Yun-Ho
Kim, Dong Yeon
Oh, Hyeongjoo
Kim, Soo-Il
Oh, Su Yeon
Kang, Young-Hee
Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
title Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
title_full Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
title_fullStr Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
title_full_unstemmed Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
title_short Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
title_sort dietary chrysin suppresses formation of actin cytoskeleton and focal adhesion in age-exposed mesangial cells and diabetic kidney: role of autophagy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705957/
https://www.ncbi.nlm.nih.gov/pubmed/30634545
http://dx.doi.org/10.3390/nu11010127
work_keys_str_mv AT leeeunjung dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT kangminkyung dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT kimyunho dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT kimdongyeon dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT ohhyeongjoo dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT kimsooil dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT ohsuyeon dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy
AT kangyounghee dietarychrysinsuppressesformationofactincytoskeletonandfocaladhesioninageexposedmesangialcellsanddiabetickidneyroleofautophagy