Cargando…

Method for selective quantification of immune and inflammatory cells in the cornea using flow cytometry

The cornea serves as a protective surface against the environment (i.e., allergens, pollutants, desiccation and microorganisms) and promotes vision, made possible by corneal transparency. This protocol describes corneal preparation for flow cytometry to assess cells localized in the cornea. Our mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Ogawa, Mamoru, Inomata, Takenori, Shiang, Tina, Tsubota, Kazuo, Murakami, Akira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Journal of Biological Methods 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706157/
https://www.ncbi.nlm.nih.gov/pubmed/31453252
http://dx.doi.org/10.14440/jbm.2018.237
Descripción
Sumario:The cornea serves as a protective surface against the environment (i.e., allergens, pollutants, desiccation and microorganisms) and promotes vision, made possible by corneal transparency. This protocol describes corneal preparation for flow cytometry to assess cells localized in the cornea. Our model details the process, from determining how many corneas are needed in the experiment to corneal excision to digestion and staining of the cornea cells. The simplicity of the model allows for systematic analysis of different corneal mechanisms of immunity, inflammation, angiogenesis and wound healing. In corneal transplantation, residential immune and inflammatory cells are key to the mechanisms that underlie angiogenesis, opacity, and graft rejection. In addition, this model can also elucidate cellular mechanisms mediating corneal graft outcomes and wound healing. Lastly, this model can be used to analyze the efficacy of new medications such as instillation and subconjunctival injections and assess the potential of therapeutic molecules to enhance graft survival and wound healing in vivo.