Cargando…
Removing nucleic acids from nucleoid-associated proteins purified by affinity column
In bacteria, DNA is tightly compacted in a supercoiled organization, which is mediated in part by nucleoid-associated proteins (NAPs). NAPs are well characterized for their ability to bind nucleic acids and for their involvement in gene regulation. A method commonly used to study protein-nucleic aci...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
jbm
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706162/ https://www.ncbi.nlm.nih.gov/pubmed/31453204 http://dx.doi.org/10.14440/jbm.2016.98 |
Sumario: | In bacteria, DNA is tightly compacted in a supercoiled organization, which is mediated in part by nucleoid-associated proteins (NAPs). NAPs are well characterized for their ability to bind nucleic acids and for their involvement in gene regulation. A method commonly used to study protein-nucleic acid interactions involves immunoprecipitation of the protein of interest which is subsequently incubated with nucleic acids. A common cause of artifact is due to nucleic acids that remains bound to the protein of interest during the whole purification process. We developed an optimized method for the purification of tagged NAPs on affinity columns. The combination of three known methods allows removal of most of the nucleic acids bound to proteins during the purification process. This protocol is designed to improve the quality and specificity of results of in vitro experiments involving nucleic acid binding tests on purified NAPs. It can be used for in vitro studies of other RNA/DNA binding proteins. |
---|