Cargando…
ST analysis of the fetal electrocardiogram – Comments on recent experimental data
In their paper, Andriessen at al present a validation of fetal ECG analysis and the clinical STAN device in midgestation fetal lambs exposed to 25 minutes of umbilical cord occlusion. The study presents results that contrast remarkably from previously published experimental data which raises a numbe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706221/ https://www.ncbi.nlm.nih.gov/pubmed/31437186 http://dx.doi.org/10.1371/journal.pone.0221210 |
Sumario: | In their paper, Andriessen at al present a validation of fetal ECG analysis and the clinical STAN device in midgestation fetal lambs exposed to 25 minutes of umbilical cord occlusion. The study presents results that contrast remarkably from previously published experimental data which raises a number of questions and comments. The most striking finding of Andriessen et al is the recording of an extremely high number of alarms from the STAN equipment during control conditions when no alarms at all are expected. These patterns have never been seen, neither in the clinical situation nor in our own fetal sheep studies. The reason for this becomes apparent when their way of recording the FECG is scrutinized. In their assessment of STAN, Andriessen at al use an assumed negative aVF lead with the assumption that it will reflect the FECG in the same way as the unipolar scalp lead used clinically. The signal used for disqualification of STAN is itself not qualified to properly represent the fetal scalp lead signal that STAN is designed for. To question a proven technology is fully accepted but those attempting would be asked to argue along fully validated data and related analysis including questioning of their own data. |
---|