Cargando…

Spatiotemporal control of mitotic exit during anaphase by an aurora B-Cdk1 crosstalk

According to the prevailing ‘clock’ model, chromosome decondensation and nuclear envelope reformation when cells exit mitosis are byproducts of Cdk1 inactivation at the metaphase-anaphase transition, controlled by the spindle assembly checkpoint. However, mitotic exit was recently shown to be a func...

Descripción completa

Detalles Bibliográficos
Autores principales: Afonso, Olga, Castellani, Colleen M, Cheeseman, Liam P, Ferreira, Jorge G, Orr, Bernardo, Ferreira, Luisa T, Chambers, James J, Morais-de-Sá, Eurico, Maresca, Thomas J, Maiato, Helder
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706241/
https://www.ncbi.nlm.nih.gov/pubmed/31424385
http://dx.doi.org/10.7554/eLife.47646
Descripción
Sumario:According to the prevailing ‘clock’ model, chromosome decondensation and nuclear envelope reformation when cells exit mitosis are byproducts of Cdk1 inactivation at the metaphase-anaphase transition, controlled by the spindle assembly checkpoint. However, mitotic exit was recently shown to be a function of chromosome separation during anaphase, assisted by a midzone Aurora B phosphorylation gradient - the ‘ruler’ model. Here we found that Cdk1 remains active during anaphase due to ongoing APC/C(Cdc20)- and APC/C(Cdh1)-mediated degradation of B-type Cyclins in Drosophila and human cells. Failure to degrade B-type Cyclins during anaphase prevented mitotic exit in a Cdk1-dependent manner. Cyclin B1-Cdk1 localized at the spindle midzone in an Aurora B-dependent manner, with incompletely separated chromosomes showing the highest Cdk1 activity. Slowing down anaphase chromosome motion delayed Cyclin B1 degradation and mitotic exit in an Aurora B-dependent manner. Thus, a crosstalk between molecular ‘rulers’ and ‘clocks’ licenses mitotic exit only after proper chromosome separation.