Cargando…

Analyses of virus/viroid communities in nectarine trees by next-generation sequencing and insight into viral synergisms implication in host disease symptoms

We analyzed virus and viroid communities in five individual trees of two nectarine cultivars with different disease phenotypes using next-generation sequencing technology. Different viral communities were found in different cultivars and individual trees. A total of eight viruses and one viroid in f...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yunxiao, Li, Shifang, Na, Chengyong, Yang, Lijuan, Lu, Meiguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706421/
https://www.ncbi.nlm.nih.gov/pubmed/31439919
http://dx.doi.org/10.1038/s41598-019-48714-z
Descripción
Sumario:We analyzed virus and viroid communities in five individual trees of two nectarine cultivars with different disease phenotypes using next-generation sequencing technology. Different viral communities were found in different cultivars and individual trees. A total of eight viruses and one viroid in five families were identified in a single tree. To our knowledge, this is the first report showing that the most-frequently identified viral and viroid species co-infect a single individual peach tree, and is also the first report of peach virus D infecting Prunus in China. Combining analyses of genetic variation and sRNA data for co-infecting viruses/viroid in individual trees revealed for the first time that viral synergisms involving a few virus genera in the Betaflexiviridae, Closteroviridae, and Luteoviridae families play a role in determining disease symptoms. Evolutionary analysis of one of the most dominant peach pathogens, peach latent mosaic viroid (PLMVd), shows that the PLMVd sequences recovered from symptomatic and asymptomatic nectarine leaves did not all cluster together, and intra-isolate divergent sequence variants co-infected individual trees. Our study provides insight into the role that mixed viral/viroid communities infecting nectarine play in host symptom development, and will be important in further studies of epidemiological features of host-pathogen interactions.