Cargando…
New system to examine the activity and water and food intake of germ-free mice in a sealed positive-pressure cage
Germ-free (GF) mice are useful models for the examination of host–microbe interactions in health and disease. We recently reported on the maintenance of individual GF mice for more than 1 year in a sealed positive-pressure cage. However, no useful system exists to automatically record basic behavior...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706585/ https://www.ncbi.nlm.nih.gov/pubmed/31463382 http://dx.doi.org/10.1016/j.heliyon.2019.e02176 |
Sumario: | Germ-free (GF) mice are useful models for the examination of host–microbe interactions in health and disease. We recently reported on the maintenance of individual GF mice for more than 1 year in a sealed positive-pressure cage. However, no useful system exists to automatically record basic behavioral patterns, such as activity and the intake of water and food, under GF status. In this study, we examined basic behavior by combining the sealed positive-pressure cage with a behavioral monitoring system and observed the gross morphology of GF mice at 4 weeks and 8 months of age. GF mice exhibited cecal enlargement and had lower body and adipose tissue weights compared with age-matched specific pathogen–free (SPF) mice. Although both strains had similar circadian rhythms, GF mice exhibited decreased activity compared with age-matched SPF mice. GF mice also exhibited increased levels of water intake compared with age-matched SPF mice. Although GF mice demonstrated decreased food intake levels at the age of 4 weeks, they exhibited increased food intake levels compared with age-matched SPF mice at the age of 8 months. The present research indicates that automated measurement systems that record the basic behaviors of GF mice for long periods are useful for the acceleration of the study of metabolic functions and host–microbe interactions. |
---|