Cargando…
Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli
Metabolite binding to proteins regulates nearly all cellular processes, but our knowledge of these interactions originates primarily from empirical in vitro studies. Here, we report the first systematic study of interactions between water‐soluble proteins and polar metabolites in an entire biologica...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706640/ https://www.ncbi.nlm.nih.gov/pubmed/31464375 http://dx.doi.org/10.15252/msb.20199008 |
_version_ | 1783445727081398272 |
---|---|
author | Diether, Maren Nikolaev, Yaroslav Allain, Frédéric HT Sauer, Uwe |
author_facet | Diether, Maren Nikolaev, Yaroslav Allain, Frédéric HT Sauer, Uwe |
author_sort | Diether, Maren |
collection | PubMed |
description | Metabolite binding to proteins regulates nearly all cellular processes, but our knowledge of these interactions originates primarily from empirical in vitro studies. Here, we report the first systematic study of interactions between water‐soluble proteins and polar metabolites in an entire biological subnetwork. To test the depth of our current knowledge, we chose to investigate the well‐characterized Escherichia coli central metabolism. Using ligand‐detected NMR, we assayed 29 enzymes towards binding events with 55 intracellular metabolites. Focusing on high‐confidence interactions at a false‐positive rate of 5%, we detected 98 interactions, among which purine nucleotides accounted for one‐third, while 50% of all metabolites did not interact with any enzyme. In contrast, only five enzymes did not exhibit any metabolite binding and some interacted with up to 11 metabolites. About 40% of the interacting metabolites were predicted to be allosteric effectors based on low chemical similarity to their target's reactants. For five of the eight tested interactions, in vitro assays confirmed novel regulatory functions, including ATP and GTP inhibition of the first pentose phosphate pathway enzyme. With 76 new candidate regulatory interactions that have not been reported previously, we essentially doubled the number of known interactions, indicating that the presently available information about protein–metabolite interactions may only be the tip of the iceberg. |
format | Online Article Text |
id | pubmed-6706640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67066402019-08-28 Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli Diether, Maren Nikolaev, Yaroslav Allain, Frédéric HT Sauer, Uwe Mol Syst Biol Articles Metabolite binding to proteins regulates nearly all cellular processes, but our knowledge of these interactions originates primarily from empirical in vitro studies. Here, we report the first systematic study of interactions between water‐soluble proteins and polar metabolites in an entire biological subnetwork. To test the depth of our current knowledge, we chose to investigate the well‐characterized Escherichia coli central metabolism. Using ligand‐detected NMR, we assayed 29 enzymes towards binding events with 55 intracellular metabolites. Focusing on high‐confidence interactions at a false‐positive rate of 5%, we detected 98 interactions, among which purine nucleotides accounted for one‐third, while 50% of all metabolites did not interact with any enzyme. In contrast, only five enzymes did not exhibit any metabolite binding and some interacted with up to 11 metabolites. About 40% of the interacting metabolites were predicted to be allosteric effectors based on low chemical similarity to their target's reactants. For five of the eight tested interactions, in vitro assays confirmed novel regulatory functions, including ATP and GTP inhibition of the first pentose phosphate pathway enzyme. With 76 new candidate regulatory interactions that have not been reported previously, we essentially doubled the number of known interactions, indicating that the presently available information about protein–metabolite interactions may only be the tip of the iceberg. John Wiley and Sons Inc. 2019-08-23 /pmc/articles/PMC6706640/ /pubmed/31464375 http://dx.doi.org/10.15252/msb.20199008 Text en © 2019 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Diether, Maren Nikolaev, Yaroslav Allain, Frédéric HT Sauer, Uwe Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli |
title | Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli
|
title_full | Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli
|
title_fullStr | Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli
|
title_full_unstemmed | Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli
|
title_short | Systematic mapping of protein‐metabolite interactions in central metabolism of Escherichia coli
|
title_sort | systematic mapping of protein‐metabolite interactions in central metabolism of escherichia coli |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706640/ https://www.ncbi.nlm.nih.gov/pubmed/31464375 http://dx.doi.org/10.15252/msb.20199008 |
work_keys_str_mv | AT diethermaren systematicmappingofproteinmetaboliteinteractionsincentralmetabolismofescherichiacoli AT nikolaevyaroslav systematicmappingofproteinmetaboliteinteractionsincentralmetabolismofescherichiacoli AT allainfredericht systematicmappingofproteinmetaboliteinteractionsincentralmetabolismofescherichiacoli AT saueruwe systematicmappingofproteinmetaboliteinteractionsincentralmetabolismofescherichiacoli |