Cargando…

Clinical exome sequencing identifies two novel mutations of the SCN1A and SCN2A genes in Moroccan patients with epilepsy: a case series

BACKGROUND: Epilepsy is the most common neurological disorder that causes spontaneous, unprovoked, and recurrent seizures. Epilepsy is clinically and genetically heterogeneous with various modes of inheritance. The complexity of epilepsy presents a challenge and identification of the causal genetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahli, Maryem, Zrhidri, Abdelali, Elaloui, Siham Chafai, Smaili, Wiam, Lyahyai, Jaber, Oudghiri, Fatima Zohra, Sefiani, Abdelaziz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706917/
https://www.ncbi.nlm.nih.gov/pubmed/31439038
http://dx.doi.org/10.1186/s13256-019-2203-8
Descripción
Sumario:BACKGROUND: Epilepsy is the most common neurological disorder that causes spontaneous, unprovoked, and recurrent seizures. Epilepsy is clinically and genetically heterogeneous with various modes of inheritance. The complexity of epilepsy presents a challenge and identification of the causal genetic mutation allows diagnosis, genetic counseling, predicting prognosis, and, in some cases, treatment decisions. Clinical exome sequencing is actually becoming a powerful approach for molecular diagnosis of heterogeneous neurological disorders in clinical practice. CASE PRESENTATION: We report our observations of three unrelated Moroccan patients referred to our genetics department for molecular diagnosis of epilepsy: a 4-year-old Moroccan boy, a 3-year-old Moroccan girl, and a 7-year-old Moroccan boy. Due to the heterogeneity and complexity of epilepsy, we performed clinical exome sequencing followed by targeted analysis of 936 epilepsy genes. A total of three mutations were identified in known epilepsy genes (SCN1A, SCN2A). By clinical exome sequencing, we identified two novel mutations: c.4973C>A (p.Thr1658Lys) in SCN1A gene and c.1283A>G (p.Tyr428Cys) in the SCN2A gene, whereas the third mutation c.3295G>T (p.Glu1099*) was already described in patients with Dravet syndrome. CONCLUSION: This study demonstrates that clinical exome sequencing is an effective diagnosis tool to investigate this group of diseases with huge diversity and defends its use in clinical routine.