Cargando…
Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females
Clinical presentations of mutations in the IQSEC2 gene on the X-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechan...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706959/ https://www.ncbi.nlm.nih.gov/pubmed/31439632 http://dx.doi.org/10.26508/lsa.201900386 |
_version_ | 1783445784996347904 |
---|---|
author | Jackson, Matilda R Loring, Karagh E Homan, Claire C Thai, Monica HN Määttänen, Laura Arvio, Maria Jarvela, Irma Shaw, Marie Gardner, Alison Gecz, Jozef Shoubridge, Cheryl |
author_facet | Jackson, Matilda R Loring, Karagh E Homan, Claire C Thai, Monica HN Määttänen, Laura Arvio, Maria Jarvela, Irma Shaw, Marie Gardner, Alison Gecz, Jozef Shoubridge, Cheryl |
author_sort | Jackson, Matilda R |
collection | PubMed |
description | Clinical presentations of mutations in the IQSEC2 gene on the X-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechanisms driving disease expression in heterozygous females. Using a CRISPR/Cas9–edited Iqsec2 KO mouse model, we confirm the loss of Iqsec2 mRNA expression and lack of Iqsec2 protein within the brain of both founder and progeny mice. Both male (52%) and female (46%) Iqsec2 KO mice present with frequent and recurrent seizures. Focusing on Iqsec2 KO heterozygous female mice, we demonstrate increased hyperactivity, altered anxiety and fear responses, decreased social interactions, delayed learning capacity and decreased memory retention/novel recognition, recapitulating psychiatric issues, autistic-like features, and cognitive deficits present in female patients with loss-of-function IQSEC2 variants. Despite Iqsec2 normally acting to activate Arf6 substrate, we demonstrate that mice modelling the loss of Iqsec2 function present with increased levels of activated Arf6. We contend that loss of Iqsec2 function leads to altered regulation of activated Arf6-mediated responses to synaptic signalling and immature synaptic networks. We highlight the importance of IQSEC2 function for females by reporting a novel nonsense variant c.566C > A, p.(S189*) in an elderly female patient with profound intellectual disability, generalised seizures, and behavioural disturbances. Our human and mouse data reaffirm IQSEC2 as another disease gene with an unexpected X-chromosome heterozygous female phenotype. Our Iqsec2 mouse model recapitulates the phenotypes observed in human patients despite the differences in the IQSEC2/Iqsec2 gene X-chromosome inactivation between the species. |
format | Online Article Text |
id | pubmed-6706959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-67069592019-09-05 Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females Jackson, Matilda R Loring, Karagh E Homan, Claire C Thai, Monica HN Määttänen, Laura Arvio, Maria Jarvela, Irma Shaw, Marie Gardner, Alison Gecz, Jozef Shoubridge, Cheryl Life Sci Alliance Research Articles Clinical presentations of mutations in the IQSEC2 gene on the X-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechanisms driving disease expression in heterozygous females. Using a CRISPR/Cas9–edited Iqsec2 KO mouse model, we confirm the loss of Iqsec2 mRNA expression and lack of Iqsec2 protein within the brain of both founder and progeny mice. Both male (52%) and female (46%) Iqsec2 KO mice present with frequent and recurrent seizures. Focusing on Iqsec2 KO heterozygous female mice, we demonstrate increased hyperactivity, altered anxiety and fear responses, decreased social interactions, delayed learning capacity and decreased memory retention/novel recognition, recapitulating psychiatric issues, autistic-like features, and cognitive deficits present in female patients with loss-of-function IQSEC2 variants. Despite Iqsec2 normally acting to activate Arf6 substrate, we demonstrate that mice modelling the loss of Iqsec2 function present with increased levels of activated Arf6. We contend that loss of Iqsec2 function leads to altered regulation of activated Arf6-mediated responses to synaptic signalling and immature synaptic networks. We highlight the importance of IQSEC2 function for females by reporting a novel nonsense variant c.566C > A, p.(S189*) in an elderly female patient with profound intellectual disability, generalised seizures, and behavioural disturbances. Our human and mouse data reaffirm IQSEC2 as another disease gene with an unexpected X-chromosome heterozygous female phenotype. Our Iqsec2 mouse model recapitulates the phenotypes observed in human patients despite the differences in the IQSEC2/Iqsec2 gene X-chromosome inactivation between the species. Life Science Alliance LLC 2019-08-22 /pmc/articles/PMC6706959/ /pubmed/31439632 http://dx.doi.org/10.26508/lsa.201900386 Text en © 2019 Jackson et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Jackson, Matilda R Loring, Karagh E Homan, Claire C Thai, Monica HN Määttänen, Laura Arvio, Maria Jarvela, Irma Shaw, Marie Gardner, Alison Gecz, Jozef Shoubridge, Cheryl Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females |
title | Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females |
title_full | Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females |
title_fullStr | Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females |
title_full_unstemmed | Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females |
title_short | Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females |
title_sort | heterozygous loss of function of iqsec2/iqsec2 leads to increased activated arf6 and severe neurocognitive seizure phenotype in females |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706959/ https://www.ncbi.nlm.nih.gov/pubmed/31439632 http://dx.doi.org/10.26508/lsa.201900386 |
work_keys_str_mv | AT jacksonmatildar heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT loringkaraghe heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT homanclairec heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT thaimonicahn heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT maattanenlaura heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT arviomaria heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT jarvelairma heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT shawmarie heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT gardneralison heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT geczjozef heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales AT shoubridgecheryl heterozygouslossoffunctionofiqsec2iqsec2leadstoincreasedactivatedarf6andsevereneurocognitiveseizurephenotypeinfemales |