Cargando…
Application of corneal injury models in dual fluorescent reporter transgenic mice to understand the roles of the cornea and limbus in angiogenic and lymphangiogenic privilege
The role of the corneal epithelium and limbus in corneal avascularity and pathological neovascularization (NV) is not well understood. To investigate the contributions of the corneal and limbal epithelia in angiogenic and lymphangiogenic privilege, we designed five injury models involving debridemen...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707148/ https://www.ncbi.nlm.nih.gov/pubmed/31444394 http://dx.doi.org/10.1038/s41598-019-48811-z |
Sumario: | The role of the corneal epithelium and limbus in corneal avascularity and pathological neovascularization (NV) is not well understood. To investigate the contributions of the corneal and limbal epithelia in angiogenic and lymphangiogenic privilege, we designed five injury models involving debridement of different portions of the cornea and limbus and applied them to the dual-fluorescence reporter Prox1-GFP/Flt1-DsRed mouse, which permits in vivo imaging of blood and lymphatic vessels via fluorescence microscopy. Debridement of the whole cornea resulted in significant hemangiogenesis (HA) and lymphangiogenesis (LA), while that of the whole limbus yielded minimal corneal HA or LA. Following hemilimbal plus whole corneal debridement, corneal NV occurred only through the non-injured aspect of the limbus. Overall, these results suggest that the integrity of the corneal epithelium is important for (lymph)angiogenic privilege, whereas the limbus does not act as a physical or physiologic barrier to invading vessels. In CDh5-CreERT2VEGFR2lox/PGFD mice, conditional deletion of vascular endothelial growth factor receptor 2 in vascular endothelial cells abolished injury-induced HA and LA, demonstrating the utility of this transgenic mouse line for identifying important factors in the process of neovascularization. |
---|