Cargando…
Dynamical modeling of multi-scale variability in neuronal competition
Variability is observed at multiple-scales in the brain and ubiquitous in perception. However, the nature of perceptual variability is an open question. We focus on variability during perceptual rivalry, a form of neuronal competition. Rivalry provides a window into neural processing since activity...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707190/ https://www.ncbi.nlm.nih.gov/pubmed/31453383 http://dx.doi.org/10.1038/s42003-019-0555-7 |
Sumario: | Variability is observed at multiple-scales in the brain and ubiquitous in perception. However, the nature of perceptual variability is an open question. We focus on variability during perceptual rivalry, a form of neuronal competition. Rivalry provides a window into neural processing since activity in many brain areas is correlated to the alternating perception rather than a constant ambiguous stimulus. It exhibits robust properties at multiple scales including conscious awareness and neuron dynamics. The prevalent theory for spiking variability is called the balanced state; whereas, the source of perceptual variability is unknown. Here we show that a single biophysical circuit model, satisfying certain mutual inhibition architectures, can explain spiking and perceptual variability during rivalry. These models adhere to a broad set of strict experimental constraints at multiple scales. As we show, the models predict how spiking and perceptual variability changes with stimulus conditions. |
---|