Cargando…
Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques
The quality of digital elevation models (DEMs), as well as their spatial resolution, are important issues in geomorphic studies. However, their influence on landslide susceptibility mapping (LSM) remains poorly constrained. This work determined the scale dependency of DEM-derived geomorphometric fac...
Autores principales: | Chang, Kuan-Tsung, Merghadi, Abdelaziz, Yunus, Ali P., Pham, Binh Thai, Dou, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707277/ https://www.ncbi.nlm.nih.gov/pubmed/31444375 http://dx.doi.org/10.1038/s41598-019-48773-2 |
Ejemplares similares
-
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan
por: Dou, Jie, et al.
Publicado: (2015) -
Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning
por: Lai, Jhe-Syuan, et al.
Publicado: (2019) -
An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping
por: Feizizadeh, Bakhtiar, et al.
Publicado: (2014) -
Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models
por: Tengtrairat, Naruephorn, et al.
Publicado: (2021)