Cargando…

Isolated zero field sub-10 nm skyrmions in ultrathin Co films

Due to their exceptional topological and dynamical properties magnetic skyrmions—localized stable spin structures—show great promise for spintronic applications. To become technologically competitive, isolated skyrmions with diameters below 10 nm stable at zero magnetic field and at room temperature...

Descripción completa

Detalles Bibliográficos
Autores principales: Meyer, Sebastian, Perini, Marco, von Malottki, Stephan, Kubetzka, André, Wiesendanger, Roland, von Bergmann, Kirsten, Heinze, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707282/
https://www.ncbi.nlm.nih.gov/pubmed/31444358
http://dx.doi.org/10.1038/s41467-019-11831-4
_version_ 1783445835741134848
author Meyer, Sebastian
Perini, Marco
von Malottki, Stephan
Kubetzka, André
Wiesendanger, Roland
von Bergmann, Kirsten
Heinze, Stefan
author_facet Meyer, Sebastian
Perini, Marco
von Malottki, Stephan
Kubetzka, André
Wiesendanger, Roland
von Bergmann, Kirsten
Heinze, Stefan
author_sort Meyer, Sebastian
collection PubMed
description Due to their exceptional topological and dynamical properties magnetic skyrmions—localized stable spin structures—show great promise for spintronic applications. To become technologically competitive, isolated skyrmions with diameters below 10 nm stable at zero magnetic field and at room temperature are desired. Despite finding skyrmions in a wide spectrum of materials, the quest for a material with these envisioned properties is ongoing. Here we report zero field isolated skyrmions at T = 4 K with diameters below 5 nm observed in the virgin ferromagnetic state coexisting with 1 nm thin domain walls in Rh/Co atomic bilayers on Ir(111). These spin structures are investigated by spin-polarized scanning tunneling microscopy and can also be detected using non-spin-polarized tips via the noncollinear magnetoresistance. We demonstrate that sub-10 nm skyrmions are stabilized in these ferromagnetic Co films at zero field due to strong frustration of exchange interaction, together with Dzyaloshinskii–Moriya interaction and large magnetocrystalline anisotropy.
format Online
Article
Text
id pubmed-6707282
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67072822019-08-26 Isolated zero field sub-10 nm skyrmions in ultrathin Co films Meyer, Sebastian Perini, Marco von Malottki, Stephan Kubetzka, André Wiesendanger, Roland von Bergmann, Kirsten Heinze, Stefan Nat Commun Article Due to their exceptional topological and dynamical properties magnetic skyrmions—localized stable spin structures—show great promise for spintronic applications. To become technologically competitive, isolated skyrmions with diameters below 10 nm stable at zero magnetic field and at room temperature are desired. Despite finding skyrmions in a wide spectrum of materials, the quest for a material with these envisioned properties is ongoing. Here we report zero field isolated skyrmions at T = 4 K with diameters below 5 nm observed in the virgin ferromagnetic state coexisting with 1 nm thin domain walls in Rh/Co atomic bilayers on Ir(111). These spin structures are investigated by spin-polarized scanning tunneling microscopy and can also be detected using non-spin-polarized tips via the noncollinear magnetoresistance. We demonstrate that sub-10 nm skyrmions are stabilized in these ferromagnetic Co films at zero field due to strong frustration of exchange interaction, together with Dzyaloshinskii–Moriya interaction and large magnetocrystalline anisotropy. Nature Publishing Group UK 2019-08-23 /pmc/articles/PMC6707282/ /pubmed/31444358 http://dx.doi.org/10.1038/s41467-019-11831-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Meyer, Sebastian
Perini, Marco
von Malottki, Stephan
Kubetzka, André
Wiesendanger, Roland
von Bergmann, Kirsten
Heinze, Stefan
Isolated zero field sub-10 nm skyrmions in ultrathin Co films
title Isolated zero field sub-10 nm skyrmions in ultrathin Co films
title_full Isolated zero field sub-10 nm skyrmions in ultrathin Co films
title_fullStr Isolated zero field sub-10 nm skyrmions in ultrathin Co films
title_full_unstemmed Isolated zero field sub-10 nm skyrmions in ultrathin Co films
title_short Isolated zero field sub-10 nm skyrmions in ultrathin Co films
title_sort isolated zero field sub-10 nm skyrmions in ultrathin co films
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707282/
https://www.ncbi.nlm.nih.gov/pubmed/31444358
http://dx.doi.org/10.1038/s41467-019-11831-4
work_keys_str_mv AT meyersebastian isolatedzerofieldsub10nmskyrmionsinultrathincofilms
AT perinimarco isolatedzerofieldsub10nmskyrmionsinultrathincofilms
AT vonmalottkistephan isolatedzerofieldsub10nmskyrmionsinultrathincofilms
AT kubetzkaandre isolatedzerofieldsub10nmskyrmionsinultrathincofilms
AT wiesendangerroland isolatedzerofieldsub10nmskyrmionsinultrathincofilms
AT vonbergmannkirsten isolatedzerofieldsub10nmskyrmionsinultrathincofilms
AT heinzestefan isolatedzerofieldsub10nmskyrmionsinultrathincofilms