Cargando…
Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits
Transcriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we generate a small but significant improvement in the...
Autores principales: | Zhang, Wen, Voloudakis, Georgios, Rajagopal, Veera M., Readhead, Ben, Dudley, Joel T., Schadt, Eric E., Björkegren, Johan L. M., Kim, Yungil, Fullard, John F., Hoffman, Gabriel E., Roussos, Panos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707297/ https://www.ncbi.nlm.nih.gov/pubmed/31444360 http://dx.doi.org/10.1038/s41467-019-11874-7 |
Ejemplares similares
-
Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia
por: Fullard, John F., et al.
Publicado: (2019) -
DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype–phenotype prediction
por: Chandrashekar, Pramod Bharadwaj, et al.
Publicado: (2023) -
Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet
por: Hoffman, Gabriel E., et al.
Publicado: (2023) -
Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet
por: Hoffman, Gabriel E., et al.
Publicado: (2023) -
Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification
por: Hoffman, Gabriel E, et al.
Publicado: (2019)