Cargando…
Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study
The evaluation of building facades is one of the most important elements in built environments for helping architects and professionals to develop future designs. The form or shape of windows in building facades has direct impacts on perceivers’ affective state and emotions. To understand the impact...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707382/ https://www.ncbi.nlm.nih.gov/pubmed/31474842 http://dx.doi.org/10.3389/fnbeh.2019.00186 |
_version_ | 1783445850652934144 |
---|---|
author | Naghibi Rad, Parastou Shahroudi, Abbas Ali Shabani, Hamed Ajami, Sahar Lashgari, Reza |
author_facet | Naghibi Rad, Parastou Shahroudi, Abbas Ali Shabani, Hamed Ajami, Sahar Lashgari, Reza |
author_sort | Naghibi Rad, Parastou |
collection | PubMed |
description | The evaluation of building facades is one of the most important elements in built environments for helping architects and professionals to develop future designs. The form or shape of windows in building facades has direct impacts on perceivers’ affective state and emotions. To understand the impacts of geometric windows on the subject’s feedback and cortical activity, psychophysics experiments and electroencephalogram (EEG) recordings were measured from the participants. Our behavioral results show a distinguished categorization of the window shapes as pleasant and unpleasant stimuli. The rectangular, square, circular and semi-circular arch were determined as the pleasant window shapes, while the triangular and triangular arch window shapes were distinguished as unpleasant. Furthermore, event-related potential (ERP) components (N1, P2 and P3) were investigated to determine the influence of window shapes on the local brain activity. To measure reliable cortical responses, a Butterworth notch filter (50 Hz), band pass filter (0.1–60 Hz) and ADJUST filter were employed to remove the artifacts. The electrophysiological results show increased activity for the unpleasant in comparison to the pleasant windows (p < 0.05, Rank-Sum test) in both frontal (for P2 component) and posterio-occipital (ERP amplitudes; the N1 through to the P3 peak) channels. The ERP amplitudes of the right hemisphere were significantly larger than in the left hemisphere, not only in response to the unpleasant (p < 0.001) but also to the pleasant window stimuli (p < 0.001, Signed-Rank test). However, the unpleasant stimuli evoked significantly larger ERP amplitude than the pleasant stimuli. Moreover, the significant ERP(P2) amplitude was more distinguished for unpleasant (p = 0.01, Signed-Rank test) than pleasant windows (p = 0.01, Rank-Sum test) between frontal and central cortical lobes. Overall, our behavioral and electrophysiological studies demonstrate a distinguished categorization of pleasant and unpleasant window shapes and more significant ERP modulations in the right than left hemisphere for unpleasant windows compared to pleasant ones. |
format | Online Article Text |
id | pubmed-6707382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67073822019-08-30 Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study Naghibi Rad, Parastou Shahroudi, Abbas Ali Shabani, Hamed Ajami, Sahar Lashgari, Reza Front Behav Neurosci Behavioral Neuroscience The evaluation of building facades is one of the most important elements in built environments for helping architects and professionals to develop future designs. The form or shape of windows in building facades has direct impacts on perceivers’ affective state and emotions. To understand the impacts of geometric windows on the subject’s feedback and cortical activity, psychophysics experiments and electroencephalogram (EEG) recordings were measured from the participants. Our behavioral results show a distinguished categorization of the window shapes as pleasant and unpleasant stimuli. The rectangular, square, circular and semi-circular arch were determined as the pleasant window shapes, while the triangular and triangular arch window shapes were distinguished as unpleasant. Furthermore, event-related potential (ERP) components (N1, P2 and P3) were investigated to determine the influence of window shapes on the local brain activity. To measure reliable cortical responses, a Butterworth notch filter (50 Hz), band pass filter (0.1–60 Hz) and ADJUST filter were employed to remove the artifacts. The electrophysiological results show increased activity for the unpleasant in comparison to the pleasant windows (p < 0.05, Rank-Sum test) in both frontal (for P2 component) and posterio-occipital (ERP amplitudes; the N1 through to the P3 peak) channels. The ERP amplitudes of the right hemisphere were significantly larger than in the left hemisphere, not only in response to the unpleasant (p < 0.001) but also to the pleasant window stimuli (p < 0.001, Signed-Rank test). However, the unpleasant stimuli evoked significantly larger ERP amplitude than the pleasant stimuli. Moreover, the significant ERP(P2) amplitude was more distinguished for unpleasant (p = 0.01, Signed-Rank test) than pleasant windows (p = 0.01, Rank-Sum test) between frontal and central cortical lobes. Overall, our behavioral and electrophysiological studies demonstrate a distinguished categorization of pleasant and unpleasant window shapes and more significant ERP modulations in the right than left hemisphere for unpleasant windows compared to pleasant ones. Frontiers Media S.A. 2019-08-16 /pmc/articles/PMC6707382/ /pubmed/31474842 http://dx.doi.org/10.3389/fnbeh.2019.00186 Text en Copyright © 2019 Naghibi Rad, Shahroudi, Shabani, Ajami and Lashgari. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Behavioral Neuroscience Naghibi Rad, Parastou Shahroudi, Abbas Ali Shabani, Hamed Ajami, Sahar Lashgari, Reza Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study |
title | Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study |
title_full | Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study |
title_fullStr | Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study |
title_full_unstemmed | Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study |
title_short | Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study |
title_sort | encoding pleasant and unpleasant expression of the architectural window shapes: an erp study |
topic | Behavioral Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707382/ https://www.ncbi.nlm.nih.gov/pubmed/31474842 http://dx.doi.org/10.3389/fnbeh.2019.00186 |
work_keys_str_mv | AT naghibiradparastou encodingpleasantandunpleasantexpressionofthearchitecturalwindowshapesanerpstudy AT shahroudiabbasali encodingpleasantandunpleasantexpressionofthearchitecturalwindowshapesanerpstudy AT shabanihamed encodingpleasantandunpleasantexpressionofthearchitecturalwindowshapesanerpstudy AT ajamisahar encodingpleasantandunpleasantexpressionofthearchitecturalwindowshapesanerpstudy AT lashgarireza encodingpleasantandunpleasantexpressionofthearchitecturalwindowshapesanerpstudy |