Cargando…

Metal-insulator transition in a semiconductor nanocrystal network

Many envisioned applications of semiconductor nanocrystals (NCs), such as thermoelectric generators and transparent conductors, require metallic (nonactivated) charge transport across an NC network. Although encouraging signs of metallic or near-metallic transport have been reported, a thorough demo...

Descripción completa

Detalles Bibliográficos
Autores principales: Greenberg, Benjamin L., Robinson, Zachary L., Ayino, Yilikal, Held, Jacob T., Peterson, Timothy A., Mkhoyan, K. Andre, Pribiag, Vlad S., Aydil, Eray S., Kortshagen, Uwe R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707780/
https://www.ncbi.nlm.nih.gov/pubmed/31467972
http://dx.doi.org/10.1126/sciadv.aaw1462
_version_ 1783445914394820608
author Greenberg, Benjamin L.
Robinson, Zachary L.
Ayino, Yilikal
Held, Jacob T.
Peterson, Timothy A.
Mkhoyan, K. Andre
Pribiag, Vlad S.
Aydil, Eray S.
Kortshagen, Uwe R.
author_facet Greenberg, Benjamin L.
Robinson, Zachary L.
Ayino, Yilikal
Held, Jacob T.
Peterson, Timothy A.
Mkhoyan, K. Andre
Pribiag, Vlad S.
Aydil, Eray S.
Kortshagen, Uwe R.
author_sort Greenberg, Benjamin L.
collection PubMed
description Many envisioned applications of semiconductor nanocrystals (NCs), such as thermoelectric generators and transparent conductors, require metallic (nonactivated) charge transport across an NC network. Although encouraging signs of metallic or near-metallic transport have been reported, a thorough demonstration of nonzero conductivity, σ, in the 0 K limit has been elusive. Here, we examine the temperature dependence of σ of ZnO NC networks. Attaining both higher σ and lower temperature than in previous studies of ZnO NCs (T as low as 50 mK), we observe a clear transition from the variable-range hopping regime to the metallic regime. The critical point of the transition is distinctly marked by an unusual power law close to σ ∝ T(1/5). We analyze the critical conductivity data within a quantum critical scaling framework and estimate the metal-insulator transition (MIT) criterion in terms of the free electron density, n, and interparticle contact radius, ρ.
format Online
Article
Text
id pubmed-6707780
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-67077802019-08-29 Metal-insulator transition in a semiconductor nanocrystal network Greenberg, Benjamin L. Robinson, Zachary L. Ayino, Yilikal Held, Jacob T. Peterson, Timothy A. Mkhoyan, K. Andre Pribiag, Vlad S. Aydil, Eray S. Kortshagen, Uwe R. Sci Adv Research Articles Many envisioned applications of semiconductor nanocrystals (NCs), such as thermoelectric generators and transparent conductors, require metallic (nonactivated) charge transport across an NC network. Although encouraging signs of metallic or near-metallic transport have been reported, a thorough demonstration of nonzero conductivity, σ, in the 0 K limit has been elusive. Here, we examine the temperature dependence of σ of ZnO NC networks. Attaining both higher σ and lower temperature than in previous studies of ZnO NCs (T as low as 50 mK), we observe a clear transition from the variable-range hopping regime to the metallic regime. The critical point of the transition is distinctly marked by an unusual power law close to σ ∝ T(1/5). We analyze the critical conductivity data within a quantum critical scaling framework and estimate the metal-insulator transition (MIT) criterion in terms of the free electron density, n, and interparticle contact radius, ρ. American Association for the Advancement of Science 2019-08-23 /pmc/articles/PMC6707780/ /pubmed/31467972 http://dx.doi.org/10.1126/sciadv.aaw1462 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Greenberg, Benjamin L.
Robinson, Zachary L.
Ayino, Yilikal
Held, Jacob T.
Peterson, Timothy A.
Mkhoyan, K. Andre
Pribiag, Vlad S.
Aydil, Eray S.
Kortshagen, Uwe R.
Metal-insulator transition in a semiconductor nanocrystal network
title Metal-insulator transition in a semiconductor nanocrystal network
title_full Metal-insulator transition in a semiconductor nanocrystal network
title_fullStr Metal-insulator transition in a semiconductor nanocrystal network
title_full_unstemmed Metal-insulator transition in a semiconductor nanocrystal network
title_short Metal-insulator transition in a semiconductor nanocrystal network
title_sort metal-insulator transition in a semiconductor nanocrystal network
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707780/
https://www.ncbi.nlm.nih.gov/pubmed/31467972
http://dx.doi.org/10.1126/sciadv.aaw1462
work_keys_str_mv AT greenbergbenjaminl metalinsulatortransitioninasemiconductornanocrystalnetwork
AT robinsonzacharyl metalinsulatortransitioninasemiconductornanocrystalnetwork
AT ayinoyilikal metalinsulatortransitioninasemiconductornanocrystalnetwork
AT heldjacobt metalinsulatortransitioninasemiconductornanocrystalnetwork
AT petersontimothya metalinsulatortransitioninasemiconductornanocrystalnetwork
AT mkhoyankandre metalinsulatortransitioninasemiconductornanocrystalnetwork
AT pribiagvlads metalinsulatortransitioninasemiconductornanocrystalnetwork
AT aydilerays metalinsulatortransitioninasemiconductornanocrystalnetwork
AT kortshagenuwer metalinsulatortransitioninasemiconductornanocrystalnetwork