Cargando…

Identification of α-N-catenin as a novel tumor suppressor in neuroblastoma

The lost expression of α-catenin has been found in cancers, and reinstalling α-catenin inhibits tumor growth. Here we hypothesized that the α-N-catenin, a homologous member of α-catenin and neural-specific expressed, functions as a novel tumor suppressor in neural crest-derived tumor, neuroblastoma....

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Jingbo, Rellinger, Eric J., Kim, Kwang Woon, Powers, Camille M., Lee, Sora, Correa, Hernan, Chung, Dai H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707940/
https://www.ncbi.nlm.nih.gov/pubmed/31489113
http://dx.doi.org/10.18632/oncotarget.27096
Descripción
Sumario:The lost expression of α-catenin has been found in cancers, and reinstalling α-catenin inhibits tumor growth. Here we hypothesized that the α-N-catenin, a homologous member of α-catenin and neural-specific expressed, functions as a novel tumor suppressor in neural crest-derived tumor, neuroblastoma. We correlated CTNNA2 (encodes α-N-catenin) expression to neuroblastoma disease relapse-free survival probability using publicly accessible human neuroblastoma datasets in R2 platform. The result showed that it negatively correlated to relapse-free survival probability significantly in patients with neuroblastoma with non-MYCN amplified tumor. Conversely, overexpressing CTNNA2 suppressed the neuroblastoma cell proliferation as measuring by the clonogenesis, inhibited anchorage-independent growth with soft agar colony formation assay. Forced expression of CTNNA2 decreased cell migration and invasion. Further, overexpression of CTNNA2 reduced the secretion of angiogenic factor IL-8 and HUVEC tubule formation. Our results show, for the first time, that α-N-catenin is a tumor suppressor in neuroblastoma cells. These findings were further corroborated with in vivo tumor xenograft study, in which α-N-catenin inhibited tumor growth and reduced tumor blood vessel formation. Interestingly, this is only observed in SK-N-AS xenografts lacking MYCN expression, and not in BE(2)-C xenografts with MYCN amplification. Mechanistically, α-N-catenin attenuated NF-κB responsive genes by inhibiting NF-κB transcriptional activity. In conclusion, these data demonstrate that α-N-catenin is a tumor suppressor in non-MYCN-amplified neuroblastomas and it inhibits NF-κB signaling pathway to suppress tumor growth in human neuroblastomas. Therefore, restoring the expression of α-N-catenin can be a novel therapeutic approach for neuroblastoma patients who have the deletion of CTNNA2 and lack of MYCN amplification.