Cargando…

Mechanism of internalization of MDA-7/IL-24 protein and its cognate receptors following ligand-receptor docking

Melanoma differentiation associated gene-7 (mda-7/IL-24) is a member of the IL-10 family of cytokines, with ubiquitous direct and “bystander” tumor-selective killing properties. MDA-7/IL-24 protein binds distinct type II cytokine heterodimeric receptor complexes, IL-20R1/IL-20R2, IL-22R1/IL-20R1 and...

Descripción completa

Detalles Bibliográficos
Autores principales: Pradhan, Anjan K., Bhoopathi, Praveen, Talukdar, Sarmistha, Das, Swadesh K., Emdad, Luni, Sarkar, Devanand, Ivanov, Andrei I., Fisher, Paul B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707942/
https://www.ncbi.nlm.nih.gov/pubmed/31489119
http://dx.doi.org/10.18632/oncotarget.27150
Descripción
Sumario:Melanoma differentiation associated gene-7 (mda-7/IL-24) is a member of the IL-10 family of cytokines, with ubiquitous direct and “bystander” tumor-selective killing properties. MDA-7/IL-24 protein binds distinct type II cytokine heterodimeric receptor complexes, IL-20R1/IL-20R2, IL-22R1/IL-20R1 and IL-22R1/IL-20R2. Recombinant MDA-7/IL-24 protein induces endogenous mda-7/IL-24 expression in a receptor-dependent manner; since A549 cells that lack a complete set of cognate receptors are not responsive to exogenous protein. The mechanism of MDA-7/IL-24 ligand-receptor biology is not well understood. We explored the interaction of MDA-7/IL-24 with its’ receptors and the consequences of ligand-receptor docking. Using both pharmacological and genetic approaches we demonstrate that MDA-7/IL-24 internalization employs the clathrin-mediated endocytic pathway leading to degradation of receptors via the lysosomal/ubiquitin proteosomal pathway. This clathrin-mediated endocytosis is dynamin-dependent. This study resolves a novel mechanism of MDA-7/IL-24 protein “bystander” function, which involves receptor/protein-mediated internalization and receptor degradation.