Cargando…
Automatic glioma segmentation based on adaptive superpixel
BACKGROUND: The automatic glioma segmentation is of great significance for clinical practice. This study aims to propose an automatic method based on superpixel for glioma segmentation from the T2 weighted Magnetic Resonance Imaging. METHODS: The proposed method mainly includes three steps. First, w...
Autores principales: | Wu, Yaping, Zhao, Zhe, Wu, Weiguo, Lin, Yusong, Wang, Meiyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708204/ https://www.ncbi.nlm.nih.gov/pubmed/31443642 http://dx.doi.org/10.1186/s12880-019-0369-6 |
Ejemplares similares
-
Automatic Histogram Specification for Glioma Grading Using Multicenter Data
por: Chen, Xi, et al.
Publicado: (2019) -
Automated glioma detection and segmentation using graphical models
por: Zhao, Zhe, et al.
Publicado: (2018) -
Automatic Graph Cut Segmentation of Lesions in CT Using Mean Shift Superpixels
por: Ye, Xujiong, et al.
Publicado: (2010) -
Deep learning approach based on superpixel segmentation assisted labeling for automatic pressure ulcer diagnosis
por: Chang, Che Wei, et al.
Publicado: (2022) -
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022)