Cargando…
Novel nonsense variants in SLURP1 and DSG1 cause palmoplantar keratoderma in Pakistani families
BACKGROUND: Inherited palmoplantar keratodermas (PPKs) are clinically and genetically heterogeneous and phenotypically diverse group of genodermatoses characterized by hyperkeratosis of the palms and soles. More than 20 genes have been reported to be associated with PPKs including desmoglein 1 (DSG1...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708247/ https://www.ncbi.nlm.nih.gov/pubmed/31443639 http://dx.doi.org/10.1186/s12881-019-0872-1 |
Sumario: | BACKGROUND: Inherited palmoplantar keratodermas (PPKs) are clinically and genetically heterogeneous and phenotypically diverse group of genodermatoses characterized by hyperkeratosis of the palms and soles. More than 20 genes have been reported to be associated with PPKs including desmoglein 1 (DSG1) a key molecular component for epidermal adhesion and differentiation. Mal de Meleda (MDM) is a rare inherited autosomal recessive genodermatosis characterized by transgrediens PPK, associated with mutations in the secreted LY6/PLAUR domain containing 1 (SLURP1) gene. METHODS: This study describes clinical as well as genetic whole exome sequencing (WES) and di-deoxy sequencing investigations in two Pakistani families with a total of 12 individuals affected by PPK. RESULTS: WES identified a novel homozygous nonsense variant in SLURP1, and a novel heterozygous nonsense variant in DSG1, as likely causes of the conditions in each family. CONCLUSIONS: This study expands knowledge regarding the molecular basis of PPK, providing important information to aid clinical management in families with PPK from Pakistan. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12881-019-0872-1) contains supplementary material, which is available to authorized users. |
---|