Cargando…
A Case Study Competition Among Methods for Analyzing Large Spatial Data
The Gaussian process is an indispensable tool for spatial data analysts. The onset of the “big data” era, however, has lead to the traditional Gaussian process being computationally infeasible for modern spatial data. As such, various alternatives to the full Gaussian process that are more amenable...
Autores principales: | Heaton, Matthew J., Datta, Abhirup, Finley, Andrew O., Furrer, Reinhard, Guinness, Joseph, Guhaniyogi, Rajarshi, Gerber, Florian, Gramacy, Robert B., Hammerling, Dorit, Katzfuss, Matthias, Lindgren, Finn, Nychka, Douglas W., Sun, Furong, Zammit-Mangion, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709111/ https://www.ncbi.nlm.nih.gov/pubmed/31496633 http://dx.doi.org/10.1007/s13253-018-00348-w |
Ejemplares similares
-
Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise
por: Zammit-Mangion, Andrew, et al.
Publicado: (2015) -
High Dimensional Bayesian Regularization in Regressions Involving Symmetric Tensors
por: Guhaniyogi, Rajarshi
Publicado: (2020) -
Discussion on Competition for Spatial Statistics for Large Datasets
por: Flury, Roman, et al.
Publicado: (2021) -
Spatio-temporal statistics with R
por: Wikle, Christopher K, et al.
Publicado: (2019) -
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†
por: Zammit-Mangion, Andrew, et al.
Publicado: (2014)