Cargando…
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism bu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709211/ https://www.ncbi.nlm.nih.gov/pubmed/31253715 http://dx.doi.org/10.1523/ENEURO.0181-19.2019 |
_version_ | 1783446157588955136 |
---|---|
author | Kadas, Dimitrios Duch, Carsten Consoulas, Christos |
author_facet | Kadas, Dimitrios Duch, Carsten Consoulas, Christos |
author_sort | Kadas, Dimitrios |
collection | PubMed |
description | During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20–60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits. |
format | Online Article Text |
id | pubmed-6709211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-67092112019-08-26 Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels Kadas, Dimitrios Duch, Carsten Consoulas, Christos eNeuro Confirmation During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20–60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits. Society for Neuroscience 2019-08-05 /pmc/articles/PMC6709211/ /pubmed/31253715 http://dx.doi.org/10.1523/ENEURO.0181-19.2019 Text en Copyright © 2019 Kadas et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Confirmation Kadas, Dimitrios Duch, Carsten Consoulas, Christos Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels |
title | Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels |
title_full | Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels |
title_fullStr | Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels |
title_full_unstemmed | Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels |
title_short | Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels |
title_sort | postnatal increases in axonal conduction velocity of an identified drosophila interneuron require fast sodium, l-type calcium and shaker potassium channels |
topic | Confirmation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709211/ https://www.ncbi.nlm.nih.gov/pubmed/31253715 http://dx.doi.org/10.1523/ENEURO.0181-19.2019 |
work_keys_str_mv | AT kadasdimitrios postnatalincreasesinaxonalconductionvelocityofanidentifieddrosophilainterneuronrequirefastsodiumltypecalciumandshakerpotassiumchannels AT duchcarsten postnatalincreasesinaxonalconductionvelocityofanidentifieddrosophilainterneuronrequirefastsodiumltypecalciumandshakerpotassiumchannels AT consoulaschristos postnatalincreasesinaxonalconductionvelocityofanidentifieddrosophilainterneuronrequirefastsodiumltypecalciumandshakerpotassiumchannels |