Cargando…
Homology analysis of malware based on ensemble learning and multifeatures
With the exponential increase in malware, homology analysis has become a hot research topic in the malware detection field. This paper proposes MHAS, a malware homology analysis system based on ensemble learning and multifeatures. MHAS generates grayscale images from malware binary files and then us...
Autores principales: | Xue, Di, Li, Jingmei, Wu, Weifei, Tian, Qiao, Wang, JiaXiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709908/ https://www.ncbi.nlm.nih.gov/pubmed/31449533 http://dx.doi.org/10.1371/journal.pone.0211373 |
Ejemplares similares
-
Correction: Homology analysis of malware based on ensemble learning and multifeatures
por: Xue, Di, et al.
Publicado: (2019) -
Zero-Day Malware Detection and Effective Malware Analysis Using Shapley Ensemble Boosting and Bagging Approach
por: Kumar, Rajesh, et al.
Publicado: (2022) -
MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection
por: Wang, Xusheng, et al.
Publicado: (2022) -
Automatic Microaneurysms Detection Based on Multifeature Fusion Dictionary Learning
por: Zhou, Wei, et al.
Publicado: (2017) -
Learning malware analysis: explore the concepts, tools, and techniques to analyze and investigate Windows malware
por: K A, Monnappa
Publicado: (2018)