Cargando…
A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats
The prevalence of metabolic syndrome (MetSyn) has risen 35% since 2012 and over two-thirds of Americans exhibit features characterizing this condition (obesity, dyslipidemia, hyperglycemia, insulin resistance and/or endothelial dysfunction). The aim of this study was to evaluate the effects of a nov...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709910/ https://www.ncbi.nlm.nih.gov/pubmed/31449541 http://dx.doi.org/10.1371/journal.pone.0221392 |
_version_ | 1783446261622374400 |
---|---|
author | Crawford, Meli’sa S. Gumpricht, Eric Sweazea, Karen L. |
author_facet | Crawford, Meli’sa S. Gumpricht, Eric Sweazea, Karen L. |
author_sort | Crawford, Meli’sa S. |
collection | PubMed |
description | The prevalence of metabolic syndrome (MetSyn) has risen 35% since 2012 and over two-thirds of Americans exhibit features characterizing this condition (obesity, dyslipidemia, hyperglycemia, insulin resistance and/or endothelial dysfunction). The aim of this study was to evaluate the effects of a novel dietary supplemental organic mineral complex (OMC) on these risk factors in a rodent model of MetSyn. Six-week old male Sprague-Dawley rats were fed either standard chow or a high-fat diet (HFD) composed of 60% kcal from fat for 10 weeks. Rats were also treated with OMC in their drinking water at either 0 mg/mL (control), 0.6 mg/mL, or 3.0 mg/mL. The HFD-treated rats exhibited significantly increased body mass (p<0.05), epididymal fat pad mass (p<0.001), waist circumference (p = 0.010), in addition to elevations in plasma endotoxins (p<0.001), ALT activity (p<0.001), fasting serum glucose (p = 0.025) and insulin concentrations (p = 0.009). OMC did not affect body weight or adiposity induced by the HFD. At the higher dose OMC significantly blunted HFD-induced hyperglycemia (p = 0.021), whereas both low and high doses of OMC prevented HFD-induced endotoxemia (p = 0.002 and <0.001, respectively) and hepatocyte injury (ALT activity, p<0.01). Despite evidence of oxidative stress (elevated urinary H(2)O(2) p = 0.032) in HFD-fed rats, OMC exhibited no demonstrable antioxidative effect. Consistent with prior studies, mesenteric arteries from HFD rats had more uncoupled eNOS (p = 0.006) and iNOS protein expression (p = 0.027) in addition to impaired endothelium-dependent vasodilation that was abrogated by the high dose of OMC (p<0.05). This effect of OMC may be attributed to the high nitrate content of the supplement. These findings suggest that the OMC supplement, particularly at the higher dose, ameliorated several risk factors associated with MetSyn via a non-antioxidant-dependent mechanism. |
format | Online Article Text |
id | pubmed-6709910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67099102019-09-10 A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats Crawford, Meli’sa S. Gumpricht, Eric Sweazea, Karen L. PLoS One Research Article The prevalence of metabolic syndrome (MetSyn) has risen 35% since 2012 and over two-thirds of Americans exhibit features characterizing this condition (obesity, dyslipidemia, hyperglycemia, insulin resistance and/or endothelial dysfunction). The aim of this study was to evaluate the effects of a novel dietary supplemental organic mineral complex (OMC) on these risk factors in a rodent model of MetSyn. Six-week old male Sprague-Dawley rats were fed either standard chow or a high-fat diet (HFD) composed of 60% kcal from fat for 10 weeks. Rats were also treated with OMC in their drinking water at either 0 mg/mL (control), 0.6 mg/mL, or 3.0 mg/mL. The HFD-treated rats exhibited significantly increased body mass (p<0.05), epididymal fat pad mass (p<0.001), waist circumference (p = 0.010), in addition to elevations in plasma endotoxins (p<0.001), ALT activity (p<0.001), fasting serum glucose (p = 0.025) and insulin concentrations (p = 0.009). OMC did not affect body weight or adiposity induced by the HFD. At the higher dose OMC significantly blunted HFD-induced hyperglycemia (p = 0.021), whereas both low and high doses of OMC prevented HFD-induced endotoxemia (p = 0.002 and <0.001, respectively) and hepatocyte injury (ALT activity, p<0.01). Despite evidence of oxidative stress (elevated urinary H(2)O(2) p = 0.032) in HFD-fed rats, OMC exhibited no demonstrable antioxidative effect. Consistent with prior studies, mesenteric arteries from HFD rats had more uncoupled eNOS (p = 0.006) and iNOS protein expression (p = 0.027) in addition to impaired endothelium-dependent vasodilation that was abrogated by the high dose of OMC (p<0.05). This effect of OMC may be attributed to the high nitrate content of the supplement. These findings suggest that the OMC supplement, particularly at the higher dose, ameliorated several risk factors associated with MetSyn via a non-antioxidant-dependent mechanism. Public Library of Science 2019-08-26 /pmc/articles/PMC6709910/ /pubmed/31449541 http://dx.doi.org/10.1371/journal.pone.0221392 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Crawford, Meli’sa S. Gumpricht, Eric Sweazea, Karen L. A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats |
title | A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats |
title_full | A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats |
title_fullStr | A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats |
title_full_unstemmed | A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats |
title_short | A novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male Sprague-Dawley rats |
title_sort | novel organic mineral complex prevented high fat diet-induced hyperglycemia, endotoxemia, liver injury and endothelial dysfunction in young male sprague-dawley rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709910/ https://www.ncbi.nlm.nih.gov/pubmed/31449541 http://dx.doi.org/10.1371/journal.pone.0221392 |
work_keys_str_mv | AT crawfordmelisas anovelorganicmineralcomplexpreventedhighfatdietinducedhyperglycemiaendotoxemialiverinjuryandendothelialdysfunctioninyoungmalespraguedawleyrats AT gumprichteric anovelorganicmineralcomplexpreventedhighfatdietinducedhyperglycemiaendotoxemialiverinjuryandendothelialdysfunctioninyoungmalespraguedawleyrats AT sweazeakarenl anovelorganicmineralcomplexpreventedhighfatdietinducedhyperglycemiaendotoxemialiverinjuryandendothelialdysfunctioninyoungmalespraguedawleyrats AT crawfordmelisas novelorganicmineralcomplexpreventedhighfatdietinducedhyperglycemiaendotoxemialiverinjuryandendothelialdysfunctioninyoungmalespraguedawleyrats AT gumprichteric novelorganicmineralcomplexpreventedhighfatdietinducedhyperglycemiaendotoxemialiverinjuryandendothelialdysfunctioninyoungmalespraguedawleyrats AT sweazeakarenl novelorganicmineralcomplexpreventedhighfatdietinducedhyperglycemiaendotoxemialiverinjuryandendothelialdysfunctioninyoungmalespraguedawleyrats |