Cargando…

Synthesis of Methane Hydrate from Ice Powder Accelerated by Doping Ethanol into Methane Gas

Clathrate hydrate is considered to be a potential medium for gas storage and transportation. Slow kinetics of hydrate formation is a hindrance to the commercialized process development of such applications. The kinetics of methane hydrate formation from the reaction of ice powder and methane gas dop...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yen-An, Chu, Liang-Kai, Chu, Che-Kang, Ohmura, Ryo, Chen, Li-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710250/
https://www.ncbi.nlm.nih.gov/pubmed/31451712
http://dx.doi.org/10.1038/s41598-019-48832-8
Descripción
Sumario:Clathrate hydrate is considered to be a potential medium for gas storage and transportation. Slow kinetics of hydrate formation is a hindrance to the commercialized process development of such applications. The kinetics of methane hydrate formation from the reaction of ice powder and methane gas doped with/without saturated ethanol vapor at constant pressure of 16.55 ± 0.20 MPa and constant temperature ranging from −15 to −1.0 °C were investigated. The methane hydrate formation can be dramatically accelerated by simply doping ethanol into methane gas with ultralow ethanol concentration (<94 ppm by mole fraction) in the gas phase. For ethanol-doped system 80.1% of ice powder were converted into methane hydrate after a reaction time of 4 h, while only 26.6% of ice powder was converted into methane hydrate after a reaction time of 24 h when pure methane gas was used. Furthermore, this trace amount of ethanol could also substantially suppress the self-preservation effect to enhance the dissociation rate of methane hydrate (operated at 1 atm and temperatures below the ice melting point). In other words, a trace amount of ethanol doped in methane gas can act as a kinetic promoter for both the methane hydrate formation and dissociation.