Cargando…
Deeper Profiles and Cascaded Recurrent and Convolutional Neural Networks for state-of-the-art Protein Secondary Structure Prediction
Protein Secondary Structure prediction has been a central topic of research in Bioinformatics for decades. In spite of this, even the most sophisticated ab initio SS predictors are not able to reach the theoretical limit of three-state prediction accuracy (88–90%), while only a few predict more than...
Autores principales: | Torrisi, Mirko, Kaleel, Manaz, Pollastri, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710256/ https://www.ncbi.nlm.nih.gov/pubmed/31451723 http://dx.doi.org/10.1038/s41598-019-48786-x |
Ejemplares similares
-
Protein profiles: Biases and protocols
por: Urban, Gregor, et al.
Publicado: (2020) -
Deep learning methods in protein structure prediction
por: Torrisi, Mirko, et al.
Publicado: (2020) -
State-of-the-Art Capability of Convolutional Neural Networks to Distinguish the Signal in the Ionosphere
por: Chang, Yu-Chi, et al.
Publicado: (2022) -
The art of proof: basic training for deeper mathematics
por: Beck, Matthias, et al.
Publicado: (2010) -
Estimation of Cardiac Short Axis Slice Levels with a Cascaded Deep Convolutional and Recurrent Neural Network Model
por: Ho, Namgyu, et al.
Publicado: (2022)