Cargando…
Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and...
Autores principales: | Jo, Taeho, Nho, Kwangsik, Saykin, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710444/ https://www.ncbi.nlm.nih.gov/pubmed/31481890 http://dx.doi.org/10.3389/fnagi.2019.00220 |
Ejemplares similares
-
Deep learning detection of informative features in tau PET for Alzheimer’s disease classification
por: Jo, Taeho, et al.
Publicado: (2020) -
Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data
por: Jo, Taeho, et al.
Publicado: (2023) -
An interpretable Alzheimer’s disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification
por: Suh, Erica H., et al.
Publicado: (2023) -
Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer’s disease
por: Kim, Dokyoon, et al.
Publicado: (2017) -
Predicting Alzheimer’s disease progression using multi-modal deep learning approach
por: Lee, Garam, et al.
Publicado: (2019)