Cargando…

Invisible barriers: anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation

Anthropogenically induced fragmentation constitutes a major threat to biodiversity. Presently, conservation research and actions focus predominantly on fragmentation caused directly by physical transformation of the landscape (e.g. deforestation, agriculture, urbanization, roads, etc.). While there...

Descripción completa

Detalles Bibliográficos
Autores principales: Berger-Tal, Oded, Saltz, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710564/
https://www.ncbi.nlm.nih.gov/pubmed/31352896
http://dx.doi.org/10.1098/rstb.2018.0049
Descripción
Sumario:Anthropogenically induced fragmentation constitutes a major threat to biodiversity. Presently, conservation research and actions focus predominantly on fragmentation caused directly by physical transformation of the landscape (e.g. deforestation, agriculture, urbanization, roads, etc.). While there is no doubt that landscape features play a key role in fragmenting populations or enhancing connectivity, fragmentation may also come about by processes other than the transformation of the landscape and which may not be readily visible. Such landscape-independent fragmentation (LIF) usually comes about when anthropogenic disturbance alters the inter- and intra-specific interactions among and within species. LIF and its drivers have received little attention in the scientific literature and in the management of wildlife populations. We discuss three major classes of LIF processes and their relevance for the conservation and management of species and habitats: (i) interspecific dispersal dependency, in which populations of species that rely on other species for transport and propagation become fragmented as the transporting species declines; (ii) interspecific avoidance induction, where species are excluded from habitats and corridors owing to interspecific interactions resulting from anthropogenically induced changes in community structure (e.g. exclusions by increased predation pressure); and (iii) intraspecific behavioural divergence, where populations become segregated owing to anthropogenically induced behavioural differentiation among them. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.