Cargando…
Sample size for binary logistic prediction models: Beyond events per variable criteria
Binary logistic regression is one of the most frequently applied statistical approaches for developing clinical prediction models. Developers of such models often rely on an Events Per Variable criterion (EPV), notably EPV ≥10, to determine the minimal sample size required and the maximum number of...
Autores principales: | van Smeden, Maarten, Moons, Karel GM, de Groot, Joris AH, Collins, Gary S, Altman, Douglas G, Eijkemans, Marinus JC, Reitsma, Johannes B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710621/ https://www.ncbi.nlm.nih.gov/pubmed/29966490 http://dx.doi.org/10.1177/0962280218784726 |
Ejemplares similares
-
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
por: van Smeden, Maarten, et al.
Publicado: (2016) -
Sample size considerations and predictive performance of multinomial logistic prediction models
por: de Jong, Valentijn M. T., et al.
Publicado: (2019) -
A generic nomogram for multinomial prediction models: theory and guidance for construction
por: van Smeden, Maarten, et al.
Publicado: (2017) -
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement
por: Collins, Gary S, et al.
Publicado: (2015) -
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement
por: Collins, Gary S., et al.
Publicado: (2015)