Cargando…

Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis

BACKGROUND: In the present study, we explored potential protein biomarkers useful to predict the therapeutic response of knee osteoarthritis (KOA) patients treated with pharmaceutical grade Chondroitin sulfate/Glucosamine hydrochloride (CS+GH; Droglican, Bioiberica), in order to optimize therapeutic...

Descripción completa

Detalles Bibliográficos
Autores principales: Blanco, Francisco J., Camacho-Encina, María, González-Rodríguez, Lucía, Rego-Pérez, Ignacio, Mateos, Jesús, Fernández-Puente, Patricia, Lourido, Lucía, Rocha, Beatriz, Picchi, Florencia, Silva-Díaz, María T., Herrero, Marta, Martínez, Helena, Verges, Josep, Ruiz-Romero, Cristina, Calamia, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710680/
https://www.ncbi.nlm.nih.gov/pubmed/31489155
http://dx.doi.org/10.1177/2040622319870013
_version_ 1783446385006215168
author Blanco, Francisco J.
Camacho-Encina, María
González-Rodríguez, Lucía
Rego-Pérez, Ignacio
Mateos, Jesús
Fernández-Puente, Patricia
Lourido, Lucía
Rocha, Beatriz
Picchi, Florencia
Silva-Díaz, María T.
Herrero, Marta
Martínez, Helena
Verges, Josep
Ruiz-Romero, Cristina
Calamia, Valentina
author_facet Blanco, Francisco J.
Camacho-Encina, María
González-Rodríguez, Lucía
Rego-Pérez, Ignacio
Mateos, Jesús
Fernández-Puente, Patricia
Lourido, Lucía
Rocha, Beatriz
Picchi, Florencia
Silva-Díaz, María T.
Herrero, Marta
Martínez, Helena
Verges, Josep
Ruiz-Romero, Cristina
Calamia, Valentina
author_sort Blanco, Francisco J.
collection PubMed
description BACKGROUND: In the present study, we explored potential protein biomarkers useful to predict the therapeutic response of knee osteoarthritis (KOA) patients treated with pharmaceutical grade Chondroitin sulfate/Glucosamine hydrochloride (CS+GH; Droglican, Bioiberica), in order to optimize therapeutic outcomes. METHODS: A shotgun proteomic analysis by iTRAQ labelling and liquid chromatography–mass spectrometry (LC-MS/MS) was performed using sera from 40 patients enrolled in the Multicentre Osteoarthritis interVEntion trial with Sysadoa (MOVES). The panel of proteins potentially useful to predict KOA patient’s response was clinically validated in the whole MOVES cohort at baseline (n = 506) using commercially available enzyme-linked immunosorbent assays kits. Logistic regression models and receiver-operating-characteristics (ROC) curves were used to analyze the contribution of these proteins to our prediction models of symptomatic drug response in KOA. RESULTS: In the discovery phase of the study, a panel of six putative predictive biomarkers of response to CS+GH (APOA2, APOA4, APOH, ITIH1, C4BPa and ORM2) were identified by shotgun proteomics. Data are available via ProteomeXchange with identifier PXD012444. In the verification phase, the panel was verified in a larger set of KOA patients (n = 262). Finally, ITIH1 and ORM2 were qualified by a blind test in the whole MOVES cohort at baseline. The combination of these biomarkers with clinical variables predict the patients’ response to CS+GH with a specificity of 79.5% and a sensitivity of 77.1%. CONCLUSIONS: Combining clinical and analytical parameters, we identified one biomarker that could accurately predict KOA patients’ response to CS+GH treatment. Its use would allow an increase in response rates and safety for the patients suffering KOA.
format Online
Article
Text
id pubmed-6710680
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-67106802019-09-05 Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis Blanco, Francisco J. Camacho-Encina, María González-Rodríguez, Lucía Rego-Pérez, Ignacio Mateos, Jesús Fernández-Puente, Patricia Lourido, Lucía Rocha, Beatriz Picchi, Florencia Silva-Díaz, María T. Herrero, Marta Martínez, Helena Verges, Josep Ruiz-Romero, Cristina Calamia, Valentina Ther Adv Chronic Dis Original Research BACKGROUND: In the present study, we explored potential protein biomarkers useful to predict the therapeutic response of knee osteoarthritis (KOA) patients treated with pharmaceutical grade Chondroitin sulfate/Glucosamine hydrochloride (CS+GH; Droglican, Bioiberica), in order to optimize therapeutic outcomes. METHODS: A shotgun proteomic analysis by iTRAQ labelling and liquid chromatography–mass spectrometry (LC-MS/MS) was performed using sera from 40 patients enrolled in the Multicentre Osteoarthritis interVEntion trial with Sysadoa (MOVES). The panel of proteins potentially useful to predict KOA patient’s response was clinically validated in the whole MOVES cohort at baseline (n = 506) using commercially available enzyme-linked immunosorbent assays kits. Logistic regression models and receiver-operating-characteristics (ROC) curves were used to analyze the contribution of these proteins to our prediction models of symptomatic drug response in KOA. RESULTS: In the discovery phase of the study, a panel of six putative predictive biomarkers of response to CS+GH (APOA2, APOA4, APOH, ITIH1, C4BPa and ORM2) were identified by shotgun proteomics. Data are available via ProteomeXchange with identifier PXD012444. In the verification phase, the panel was verified in a larger set of KOA patients (n = 262). Finally, ITIH1 and ORM2 were qualified by a blind test in the whole MOVES cohort at baseline. The combination of these biomarkers with clinical variables predict the patients’ response to CS+GH with a specificity of 79.5% and a sensitivity of 77.1%. CONCLUSIONS: Combining clinical and analytical parameters, we identified one biomarker that could accurately predict KOA patients’ response to CS+GH treatment. Its use would allow an increase in response rates and safety for the patients suffering KOA. SAGE Publications 2019-08-24 /pmc/articles/PMC6710680/ /pubmed/31489155 http://dx.doi.org/10.1177/2040622319870013 Text en © The Author(s), 2019 http://www.creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research
Blanco, Francisco J.
Camacho-Encina, María
González-Rodríguez, Lucía
Rego-Pérez, Ignacio
Mateos, Jesús
Fernández-Puente, Patricia
Lourido, Lucía
Rocha, Beatriz
Picchi, Florencia
Silva-Díaz, María T.
Herrero, Marta
Martínez, Helena
Verges, Josep
Ruiz-Romero, Cristina
Calamia, Valentina
Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
title Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
title_full Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
title_fullStr Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
title_full_unstemmed Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
title_short Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
title_sort predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710680/
https://www.ncbi.nlm.nih.gov/pubmed/31489155
http://dx.doi.org/10.1177/2040622319870013
work_keys_str_mv AT blancofranciscoj predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT camachoencinamaria predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT gonzalezrodriguezlucia predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT regoperezignacio predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT mateosjesus predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT fernandezpuentepatricia predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT louridolucia predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT rochabeatriz predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT picchiflorencia predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT silvadiazmariat predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT herreromarta predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT martinezhelena predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT vergesjosep predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT ruizromerocristina predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis
AT calamiavalentina predictivemodelingoftherapeuticresponsetochondroitinsulfateglucosaminehydrochlorideinkneeosteoarthritis