Cargando…

Local-time averaged maps of [Formula: see text] emission, temperature and ion winds

We present Keck-NIRSPEC observations of Saturn's [Formula: see text] aurora taken over a period of a month, in support of the Cassini mission's ‘Grand Finale’. These observations produce two-dimensional maps of Saturn's [Formula: see text] temperature and ion winds for the first time....

Descripción completa

Detalles Bibliográficos
Autores principales: Stallard, Tom S., Baines, Kevin H., Melin, Henrik, Bradley, Thomas J., Moore, Luke, O'Donoghue, James, Miller, Steve, Chowdhury, Mohammad N., Badman, Sarah V., Allison, Hayley J., Roussos, Elias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710899/
https://www.ncbi.nlm.nih.gov/pubmed/31378177
http://dx.doi.org/10.1098/rsta.2018.0405
_version_ 1783446431241076736
author Stallard, Tom S.
Baines, Kevin H.
Melin, Henrik
Bradley, Thomas J.
Moore, Luke
O'Donoghue, James
Miller, Steve
Chowdhury, Mohammad N.
Badman, Sarah V.
Allison, Hayley J.
Roussos, Elias
author_facet Stallard, Tom S.
Baines, Kevin H.
Melin, Henrik
Bradley, Thomas J.
Moore, Luke
O'Donoghue, James
Miller, Steve
Chowdhury, Mohammad N.
Badman, Sarah V.
Allison, Hayley J.
Roussos, Elias
author_sort Stallard, Tom S.
collection PubMed
description We present Keck-NIRSPEC observations of Saturn's [Formula: see text] aurora taken over a period of a month, in support of the Cassini mission's ‘Grand Finale’. These observations produce two-dimensional maps of Saturn's [Formula: see text] temperature and ion winds for the first time. These maps show surprising complexity, with different morphologies seen in each night. The [Formula: see text] ion winds reveal multiple arcs of 0.5–1 km s(−1) ion flows inside the main auroral emission. Although these arcs of flow occur in different locations each night, they show intricate structures, including mirrored flows on the dawn and dusk of the planet. These flows do not match with the predicted flows from models of either axisymmetric currents driven by the Solar Wind or outer magnetosphere, or the planetary periodic currents associated with Saturn's variable rotation rate. The average of the ion wind flows across all the nights reveals a single narrow and focused approximately 0.3 km s(−1) flow on the dawn side and broader and more extensive 1–2 km s(−1) sub-corotation, spilt into multiple arcs, on the dusk side. The temperature maps reveal sharp gradients in ionospheric temperatures, varying between 300 and 600 K across the auroral region. These temperature changes are localized, resulting in hot and cold spots across the auroral region. These appear to be somewhat stable over several nights, but change significantly over longer periods. The position of these temperature extremes is not well organized by the planetary period and there is no evidence for a thermospheric driver of the planetary period current system. Since no past magnetospheric or thermospheric models explain the rich complexity observed here, these measurements represent a fantastic new resource, revealing the complexity of the interaction between Saturn's thermosphere, ionosphere and magnetosphere. This article is part of a discussion meeting issue ‘Advances in hydrogen molecular ions: H(3)(+), H(5)(+) and beyond’.
format Online
Article
Text
id pubmed-6710899
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-67108992019-08-31 Local-time averaged maps of [Formula: see text] emission, temperature and ion winds Stallard, Tom S. Baines, Kevin H. Melin, Henrik Bradley, Thomas J. Moore, Luke O'Donoghue, James Miller, Steve Chowdhury, Mohammad N. Badman, Sarah V. Allison, Hayley J. Roussos, Elias Philos Trans A Math Phys Eng Sci Articles We present Keck-NIRSPEC observations of Saturn's [Formula: see text] aurora taken over a period of a month, in support of the Cassini mission's ‘Grand Finale’. These observations produce two-dimensional maps of Saturn's [Formula: see text] temperature and ion winds for the first time. These maps show surprising complexity, with different morphologies seen in each night. The [Formula: see text] ion winds reveal multiple arcs of 0.5–1 km s(−1) ion flows inside the main auroral emission. Although these arcs of flow occur in different locations each night, they show intricate structures, including mirrored flows on the dawn and dusk of the planet. These flows do not match with the predicted flows from models of either axisymmetric currents driven by the Solar Wind or outer magnetosphere, or the planetary periodic currents associated with Saturn's variable rotation rate. The average of the ion wind flows across all the nights reveals a single narrow and focused approximately 0.3 km s(−1) flow on the dawn side and broader and more extensive 1–2 km s(−1) sub-corotation, spilt into multiple arcs, on the dusk side. The temperature maps reveal sharp gradients in ionospheric temperatures, varying between 300 and 600 K across the auroral region. These temperature changes are localized, resulting in hot and cold spots across the auroral region. These appear to be somewhat stable over several nights, but change significantly over longer periods. The position of these temperature extremes is not well organized by the planetary period and there is no evidence for a thermospheric driver of the planetary period current system. Since no past magnetospheric or thermospheric models explain the rich complexity observed here, these measurements represent a fantastic new resource, revealing the complexity of the interaction between Saturn's thermosphere, ionosphere and magnetosphere. This article is part of a discussion meeting issue ‘Advances in hydrogen molecular ions: H(3)(+), H(5)(+) and beyond’. The Royal Society Publishing 2019-09-23 2019-08-05 /pmc/articles/PMC6710899/ /pubmed/31378177 http://dx.doi.org/10.1098/rsta.2018.0405 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Stallard, Tom S.
Baines, Kevin H.
Melin, Henrik
Bradley, Thomas J.
Moore, Luke
O'Donoghue, James
Miller, Steve
Chowdhury, Mohammad N.
Badman, Sarah V.
Allison, Hayley J.
Roussos, Elias
Local-time averaged maps of [Formula: see text] emission, temperature and ion winds
title Local-time averaged maps of [Formula: see text] emission, temperature and ion winds
title_full Local-time averaged maps of [Formula: see text] emission, temperature and ion winds
title_fullStr Local-time averaged maps of [Formula: see text] emission, temperature and ion winds
title_full_unstemmed Local-time averaged maps of [Formula: see text] emission, temperature and ion winds
title_short Local-time averaged maps of [Formula: see text] emission, temperature and ion winds
title_sort local-time averaged maps of [formula: see text] emission, temperature and ion winds
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710899/
https://www.ncbi.nlm.nih.gov/pubmed/31378177
http://dx.doi.org/10.1098/rsta.2018.0405
work_keys_str_mv AT stallardtoms localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT baineskevinh localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT melinhenrik localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT bradleythomasj localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT mooreluke localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT odonoghuejames localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT millersteve localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT chowdhurymohammadn localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT badmansarahv localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT allisonhayleyj localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds
AT roussoselias localtimeaveragedmapsofformulaseetextemissiontemperatureandionwinds