Cargando…
A guide to group effective connectivity analysis, part 2: Second level analysis with PEB
This paper provides a worked example of using Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB) to characterise inter-subject variability in neural circuitry (effective connectivity). It steps through an analysis in detail and provides a tutorial style explanation of the underlying...
Autores principales: | Zeidman, Peter, Jafarian, Amirhossein, Seghier, Mohamed L., Litvak, Vladimir, Cagnan, Hayriye, Price, Cathy J., Friston, Karl J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711451/ https://www.ncbi.nlm.nih.gov/pubmed/31226492 http://dx.doi.org/10.1016/j.neuroimage.2019.06.032 |
Ejemplares similares
-
Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG
por: Jafarian, Amirhossein, et al.
Publicado: (2020) -
A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI
por: Zeidman, Peter, et al.
Publicado: (2019) -
Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB)
por: Sokolov, Arseny A., et al.
Publicado: (2018) -
Generic dynamic causal modelling: An illustrative application to
Parkinson's disease
por: van Wijk, Bernadette C.M., et al.
Publicado: (2018) -
Empirical Bayes for DCM: A Group Inversion Scheme
por: Friston, Karl, et al.
Publicado: (2015)