Cargando…
A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI
Dynamic Causal Modelling (DCM) is the predominant method for inferring effective connectivity from neuroimaging data. In the 15 years since its introduction, the neural models and statistical routines in DCM have developed in parallel, driven by the needs of researchers in cognitive and clinical neu...
Autores principales: | Zeidman, Peter, Jafarian, Amirhossein, Corbin, Nadège, Seghier, Mohamed L., Razi, Adeel, Price, Cathy J., Friston, Karl J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711459/ https://www.ncbi.nlm.nih.gov/pubmed/31226497 http://dx.doi.org/10.1016/j.neuroimage.2019.06.031 |
Ejemplares similares
-
A DCM for resting state fMRI
por: Friston, Karl J., et al.
Publicado: (2014) -
Construct validation of a DCM for resting state fMRI
por: Razi, Adeel, et al.
Publicado: (2015) -
A guide to group effective connectivity analysis, part 2: Second level analysis with PEB
por: Zeidman, Peter, et al.
Publicado: (2019) -
The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
por: Almgren, Hannes, et al.
Publicado: (2020) -
Editorial: Mapping Psychopathology with fMRI and Effective Connectivity Analysis
por: Li, Baojuan, et al.
Publicado: (2017)