Cargando…
K-means clustering of overweight and obese population using quantile-transformed metabolic data
OBJECTIVE: Use of K-means clustering for big data technology to cluster an overweight and obese population metabolically. METHODS: K-means clustering with the help of quantile transformation of attribute values was applied to overcome the impact of the considerable variation in the values of obesity...
Autores principales: | Li, Li, Song, Qifa, Yang, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711566/ https://www.ncbi.nlm.nih.gov/pubmed/31692562 http://dx.doi.org/10.2147/DMSO.S206640 |
Ejemplares similares
-
Categorization of β-cell capacity in patients with obesity via OGTT using K-means clustering
por: Li, Li, et al.
Publicado: (2020) -
Social determinants of overweight and obesity in Paraguayan adults using quantile regression
por: Lee, Hocheol, et al.
Publicado: (2021) -
Lack of Associations between Elevated Serum Uric Acid and Components of Metabolic Syndrome Such as Hypertension, Dyslipidemia, and T2DM in Overweight and Obese Chinese Adults
por: Li, Li, et al.
Publicado: (2019) -
Analysis of childhood overweight and obesity in Namibia using spatio-temporal quantile interval models
por: Mtambo, Owen Paweni Loss, et al.
Publicado: (2021) -
The dynamics of carbon on green energy equity investment: quantile-on-quantile and quantile coherency approaches
por: Mo, Bin, et al.
Publicado: (2021)