Cargando…
Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a
CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here th...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711708/ https://www.ncbi.nlm.nih.gov/pubmed/31397669 http://dx.doi.org/10.7554/eLife.49110 |
_version_ | 1783446556917104640 |
---|---|
author | Knott, Gavin J Cress, Brady F Liu, Jun-Jie Thornton, Brittney W Lew, Rachel J Al-Shayeb, Basem Rosenberg, Daniel J Hammel, Michal Adler, Benjamin A Lobba, Marco J Xu, Michael Arkin, Adam P Fellmann, Christof Doudna, Jennifer A |
author_facet | Knott, Gavin J Cress, Brady F Liu, Jun-Jie Thornton, Brittney W Lew, Rachel J Al-Shayeb, Basem Rosenberg, Daniel J Hammel, Michal Adler, Benjamin A Lobba, Marco J Xu, Michael Arkin, Adam P Fellmann, Christof Doudna, Jennifer A |
author_sort | Knott, Gavin J |
collection | PubMed |
description | CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage. |
format | Online Article Text |
id | pubmed-6711708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-67117082019-08-30 Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a Knott, Gavin J Cress, Brady F Liu, Jun-Jie Thornton, Brittney W Lew, Rachel J Al-Shayeb, Basem Rosenberg, Daniel J Hammel, Michal Adler, Benjamin A Lobba, Marco J Xu, Michael Arkin, Adam P Fellmann, Christof Doudna, Jennifer A eLife Biochemistry and Chemical Biology CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage. eLife Sciences Publications, Ltd 2019-08-09 /pmc/articles/PMC6711708/ /pubmed/31397669 http://dx.doi.org/10.7554/eLife.49110 Text en © 2019, Knott et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Knott, Gavin J Cress, Brady F Liu, Jun-Jie Thornton, Brittney W Lew, Rachel J Al-Shayeb, Basem Rosenberg, Daniel J Hammel, Michal Adler, Benjamin A Lobba, Marco J Xu, Michael Arkin, Adam P Fellmann, Christof Doudna, Jennifer A Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a |
title | Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a |
title_full | Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a |
title_fullStr | Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a |
title_full_unstemmed | Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a |
title_short | Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a |
title_sort | structural basis for acrva4 inhibition of specific crispr-cas12a |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711708/ https://www.ncbi.nlm.nih.gov/pubmed/31397669 http://dx.doi.org/10.7554/eLife.49110 |
work_keys_str_mv | AT knottgavinj structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT cressbradyf structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT liujunjie structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT thorntonbrittneyw structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT lewrachelj structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT alshayebbasem structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT rosenbergdanielj structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT hammelmichal structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT adlerbenjamina structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT lobbamarcoj structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT xumichael structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT arkinadamp structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT fellmannchristof structuralbasisforacrva4inhibitionofspecificcrisprcas12a AT doudnajennifera structuralbasisforacrva4inhibitionofspecificcrisprcas12a |