Cargando…

Diversity and dynamics of DNA methylation: epigenomic resources and tools for crop breeding

DNA methylation is an epigenetic modification that can affect gene expression and transposable element (TE) activities. Because cytosine DNA methylation patterns are inherited through both mitotic and meiotic cell divisions, differences in these patterns can contribute to phenotypic variability. Adv...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawakatsu, Taiji, Ecker, Joseph R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Breeding 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711733/
https://www.ncbi.nlm.nih.gov/pubmed/31481828
http://dx.doi.org/10.1270/jsbbs.19005
Descripción
Sumario:DNA methylation is an epigenetic modification that can affect gene expression and transposable element (TE) activities. Because cytosine DNA methylation patterns are inherited through both mitotic and meiotic cell divisions, differences in these patterns can contribute to phenotypic variability. Advances in high-throughput sequencing technologies have enabled the generation of abundant DNA sequence data. Integrated analyses of genome-wide gene expression patterns and DNA methylation patterns have revealed the underlying mechanisms and functions of DNA methylation. Moreover, associations between DNA methylation and agronomic traits have also been uncovered. The resulting information may be useful for future applications of natural epigenomic variation, for crop breeding. Additionally, artificial epigenome editing may be an attractive new plant breeding technique for generating novel varieties with improved agronomic traits.