Cargando…

UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking

INTRODUCTION: Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a sca...

Descripción completa

Detalles Bibliográficos
Autores principales: Sammani, A., Jansen, M., Linschoten, M., Bagheri, A., de Jonge, N., Kirkels, H., van Laake, L. W., Vink, A., van Tintelen, J. P., Dooijes, D., te Riele, A. S. J. M., Harakalova, M., Baas, A. F., Asselbergs, F. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bohn Stafleu van Loghum 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712144/
https://www.ncbi.nlm.nih.gov/pubmed/31134468
http://dx.doi.org/10.1007/s12471-019-1288-4
_version_ 1783446625143750656
author Sammani, A.
Jansen, M.
Linschoten, M.
Bagheri, A.
de Jonge, N.
Kirkels, H.
van Laake, L. W.
Vink, A.
van Tintelen, J. P.
Dooijes, D.
te Riele, A. S. J. M.
Harakalova, M.
Baas, A. F.
Asselbergs, F. W.
author_facet Sammani, A.
Jansen, M.
Linschoten, M.
Bagheri, A.
de Jonge, N.
Kirkels, H.
van Laake, L. W.
Vink, A.
van Tintelen, J. P.
Dooijes, D.
te Riele, A. S. J. M.
Harakalova, M.
Baas, A. F.
Asselbergs, F. W.
author_sort Sammani, A.
collection PubMed
description INTRODUCTION: Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a scaffold for future research. Using routine electronic health records and standardised biobanking, big data analysis on a larger number of patients and investigations are possible. In this article, we describe the UNRAVEL research data platform embedded in routine practice to facilitate research in genetic cardiomyopathies. DESIGN: Eligible participants with proven or suspected cardiac disease and their relatives are asked for permission to use their data and to draw blood for biobanking. Routinely collected clinical data are included in a research database by weekly extraction. A text-mining tool has been developed to enrich UNRAVEL with unstructured data in clinical notes. PRELIMINARY RESULTS: Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom are male. All data are captured in a temporal sequence amounting to a total of 18,565 electrocardiograms, 3619 echocardiograms, data from over 20,000 radiological examinations and 650,000 individual laboratory measurements. CONCLUSION: Integration of routine electronic health care in a research data platform allows efficient data collection, including all investigations in chronological sequence. Trials embedded in the electronic health record are now possible, providing cost-effective ways to answer clinical questions. We explicitly welcome national and international collaboration and have provided our protocols and other materials on www.unravelrdp.nl.
format Online
Article
Text
id pubmed-6712144
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Bohn Stafleu van Loghum
record_format MEDLINE/PubMed
spelling pubmed-67121442019-09-13 UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking Sammani, A. Jansen, M. Linschoten, M. Bagheri, A. de Jonge, N. Kirkels, H. van Laake, L. W. Vink, A. van Tintelen, J. P. Dooijes, D. te Riele, A. S. J. M. Harakalova, M. Baas, A. F. Asselbergs, F. W. Neth Heart J Original Article – Design Study Article INTRODUCTION: Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a scaffold for future research. Using routine electronic health records and standardised biobanking, big data analysis on a larger number of patients and investigations are possible. In this article, we describe the UNRAVEL research data platform embedded in routine practice to facilitate research in genetic cardiomyopathies. DESIGN: Eligible participants with proven or suspected cardiac disease and their relatives are asked for permission to use their data and to draw blood for biobanking. Routinely collected clinical data are included in a research database by weekly extraction. A text-mining tool has been developed to enrich UNRAVEL with unstructured data in clinical notes. PRELIMINARY RESULTS: Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom are male. All data are captured in a temporal sequence amounting to a total of 18,565 electrocardiograms, 3619 echocardiograms, data from over 20,000 radiological examinations and 650,000 individual laboratory measurements. CONCLUSION: Integration of routine electronic health care in a research data platform allows efficient data collection, including all investigations in chronological sequence. Trials embedded in the electronic health record are now possible, providing cost-effective ways to answer clinical questions. We explicitly welcome national and international collaboration and have provided our protocols and other materials on www.unravelrdp.nl. Bohn Stafleu van Loghum 2019-05-27 2019-09 /pmc/articles/PMC6712144/ /pubmed/31134468 http://dx.doi.org/10.1007/s12471-019-1288-4 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Article – Design Study Article
Sammani, A.
Jansen, M.
Linschoten, M.
Bagheri, A.
de Jonge, N.
Kirkels, H.
van Laake, L. W.
Vink, A.
van Tintelen, J. P.
Dooijes, D.
te Riele, A. S. J. M.
Harakalova, M.
Baas, A. F.
Asselbergs, F. W.
UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
title UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
title_full UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
title_fullStr UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
title_full_unstemmed UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
title_short UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
title_sort unravel: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
topic Original Article – Design Study Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712144/
https://www.ncbi.nlm.nih.gov/pubmed/31134468
http://dx.doi.org/10.1007/s12471-019-1288-4
work_keys_str_mv AT sammania unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT jansenm unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT linschotenm unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT bagheria unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT dejongen unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT kirkelsh unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT vanlaakelw unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT vinka unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT vantintelenjp unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT dooijesd unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT terieleasjm unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT harakalovam unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT baasaf unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking
AT asselbergsfw unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking