Cargando…
UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking
INTRODUCTION: Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a sca...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bohn Stafleu van Loghum
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712144/ https://www.ncbi.nlm.nih.gov/pubmed/31134468 http://dx.doi.org/10.1007/s12471-019-1288-4 |
_version_ | 1783446625143750656 |
---|---|
author | Sammani, A. Jansen, M. Linschoten, M. Bagheri, A. de Jonge, N. Kirkels, H. van Laake, L. W. Vink, A. van Tintelen, J. P. Dooijes, D. te Riele, A. S. J. M. Harakalova, M. Baas, A. F. Asselbergs, F. W. |
author_facet | Sammani, A. Jansen, M. Linschoten, M. Bagheri, A. de Jonge, N. Kirkels, H. van Laake, L. W. Vink, A. van Tintelen, J. P. Dooijes, D. te Riele, A. S. J. M. Harakalova, M. Baas, A. F. Asselbergs, F. W. |
author_sort | Sammani, A. |
collection | PubMed |
description | INTRODUCTION: Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a scaffold for future research. Using routine electronic health records and standardised biobanking, big data analysis on a larger number of patients and investigations are possible. In this article, we describe the UNRAVEL research data platform embedded in routine practice to facilitate research in genetic cardiomyopathies. DESIGN: Eligible participants with proven or suspected cardiac disease and their relatives are asked for permission to use their data and to draw blood for biobanking. Routinely collected clinical data are included in a research database by weekly extraction. A text-mining tool has been developed to enrich UNRAVEL with unstructured data in clinical notes. PRELIMINARY RESULTS: Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom are male. All data are captured in a temporal sequence amounting to a total of 18,565 electrocardiograms, 3619 echocardiograms, data from over 20,000 radiological examinations and 650,000 individual laboratory measurements. CONCLUSION: Integration of routine electronic health care in a research data platform allows efficient data collection, including all investigations in chronological sequence. Trials embedded in the electronic health record are now possible, providing cost-effective ways to answer clinical questions. We explicitly welcome national and international collaboration and have provided our protocols and other materials on www.unravelrdp.nl. |
format | Online Article Text |
id | pubmed-6712144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Bohn Stafleu van Loghum |
record_format | MEDLINE/PubMed |
spelling | pubmed-67121442019-09-13 UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking Sammani, A. Jansen, M. Linschoten, M. Bagheri, A. de Jonge, N. Kirkels, H. van Laake, L. W. Vink, A. van Tintelen, J. P. Dooijes, D. te Riele, A. S. J. M. Harakalova, M. Baas, A. F. Asselbergs, F. W. Neth Heart J Original Article – Design Study Article INTRODUCTION: Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a scaffold for future research. Using routine electronic health records and standardised biobanking, big data analysis on a larger number of patients and investigations are possible. In this article, we describe the UNRAVEL research data platform embedded in routine practice to facilitate research in genetic cardiomyopathies. DESIGN: Eligible participants with proven or suspected cardiac disease and their relatives are asked for permission to use their data and to draw blood for biobanking. Routinely collected clinical data are included in a research database by weekly extraction. A text-mining tool has been developed to enrich UNRAVEL with unstructured data in clinical notes. PRELIMINARY RESULTS: Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom are male. All data are captured in a temporal sequence amounting to a total of 18,565 electrocardiograms, 3619 echocardiograms, data from over 20,000 radiological examinations and 650,000 individual laboratory measurements. CONCLUSION: Integration of routine electronic health care in a research data platform allows efficient data collection, including all investigations in chronological sequence. Trials embedded in the electronic health record are now possible, providing cost-effective ways to answer clinical questions. We explicitly welcome national and international collaboration and have provided our protocols and other materials on www.unravelrdp.nl. Bohn Stafleu van Loghum 2019-05-27 2019-09 /pmc/articles/PMC6712144/ /pubmed/31134468 http://dx.doi.org/10.1007/s12471-019-1288-4 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article – Design Study Article Sammani, A. Jansen, M. Linschoten, M. Bagheri, A. de Jonge, N. Kirkels, H. van Laake, L. W. Vink, A. van Tintelen, J. P. Dooijes, D. te Riele, A. S. J. M. Harakalova, M. Baas, A. F. Asselbergs, F. W. UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
title | UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
title_full | UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
title_fullStr | UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
title_full_unstemmed | UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
title_short | UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
title_sort | unravel: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking |
topic | Original Article – Design Study Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712144/ https://www.ncbi.nlm.nih.gov/pubmed/31134468 http://dx.doi.org/10.1007/s12471-019-1288-4 |
work_keys_str_mv | AT sammania unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT jansenm unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT linschotenm unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT bagheria unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT dejongen unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT kirkelsh unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT vanlaakelw unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT vinka unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT vantintelenjp unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT dooijesd unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT terieleasjm unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT harakalovam unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT baasaf unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking AT asselbergsfw unravelbigdataanalyticsresearchdataplatformtoimprovecareofpatientswithcardiomyopathiesusingroutineelectronichealthrecordsandstandardisedbiobanking |