Cargando…
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
Automatic segmentation methods based on deep learning have recently demonstrated state-of-the-art performance, outperforming the ordinary methods. Nevertheless, these methods are inapplicable for small datasets, which are very common in medical problems. To this end, we propose a knowledge transfer...
Autores principales: | Kuzina, Anna, Egorov, Evgenii, Burnaev, Evgeny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712162/ https://www.ncbi.nlm.nih.gov/pubmed/31496928 http://dx.doi.org/10.3389/fnins.2019.00844 |
Ejemplares similares
-
Searching for Semantic Knowledge: A Vector Space Semantic Analysis of the Feature Generation Task
por: Cutler, Rebecca A., et al.
Publicado: (2019) -
A Bayesian generative model for learning semantic hierarchies
por: Mittelman, Roni, et al.
Publicado: (2014) -
Preserved Tool Knowledge in the Context of Impaired Action Knowledge: Implications for Models of Semantic Memory
por: Garcea, Frank E., et al.
Publicado: (2013) -
Active Learning with Bayesian UNet for Efficient Semantic Image Segmentation
por: Saidu, Isah Charles, et al.
Publicado: (2021) -
Rethinking 1D convolution for lightweight semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2023)