Cargando…

Altered oxidative stress and antioxidant defence in skeletal muscle during the first year following spinal cord injury

Oxidative stress promotes protein degradation and apoptosis in skeletal muscle undergoing atrophy. We aimed to determine whether spinal cord injury leads to changes in oxidative stress, antioxidant capacity, and apoptotic signaling in human skeletal muscle during the first year after spinal cord inj...

Descripción completa

Detalles Bibliográficos
Autores principales: Savikj, Mladen, Kostovski, Emil, Lundell, Leonidas S., Iversen, Per O., Massart, Julie, Widegren, Ulrika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712236/
https://www.ncbi.nlm.nih.gov/pubmed/31456346
http://dx.doi.org/10.14814/phy2.14218
Descripción
Sumario:Oxidative stress promotes protein degradation and apoptosis in skeletal muscle undergoing atrophy. We aimed to determine whether spinal cord injury leads to changes in oxidative stress, antioxidant capacity, and apoptotic signaling in human skeletal muscle during the first year after spinal cord injury. Vastus lateralis biopsies were obtained from seven individuals 1, 3, and 12 months after spinal cord injury and from seven able‐bodied controls. Protein content of enzymes involved in reactive oxygen species production and detoxification, and apoptotic signaling were analyzed by western blot. Protein carbonylation and 4‐hydroxynonenal protein adducts were measured as markers of oxidative damage. Glutathione content was determined fluorometrically. Protein content of NADPH oxidase 2, xanthine oxidase, and pro‐caspase‐3 was increased at 1 and 3 months after spinal cord injury compared to able‐bodied controls. Furthermore, total and reduced glutathione content was increased at 1 and 3 months after spinal cord injury. Conversely, mitochondrial complexes and superoxide dismutase 2 protein content were decreased 12 months after spinal cord injury compared to able‐bodied controls. In conclusion, we provide indirect evidence of increased reactive oxygen species production and increased apoptotic signaling at 1 and 3 months after spinal cord injury. Concomitant increases in glutathione antioxidant defences may reflect adaptations poised to maintain redox homeostasis in skeletal muscle following spinal cord injury.