Cargando…
Protein biomarkers of neural system
The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervent...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chinese PLA General Hospital
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712353/ https://www.ncbi.nlm.nih.gov/pubmed/31467504 http://dx.doi.org/10.1016/j.joto.2019.03.001 |
_version_ | 1783446662673334272 |
---|---|
author | Ghanavatinejad, Fatemeh Fard Tabrizi, Zahra Pourteymour Omidghaemi, Shadi Sharifi, Esmaeel Møller, Simon Geir Jami, Mohammad-Saeid |
author_facet | Ghanavatinejad, Fatemeh Fard Tabrizi, Zahra Pourteymour Omidghaemi, Shadi Sharifi, Esmaeel Møller, Simon Geir Jami, Mohammad-Saeid |
author_sort | Ghanavatinejad, Fatemeh |
collection | PubMed |
description | The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including βIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc. |
format | Online Article Text |
id | pubmed-6712353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Chinese PLA General Hospital |
record_format | MEDLINE/PubMed |
spelling | pubmed-67123532019-08-29 Protein biomarkers of neural system Ghanavatinejad, Fatemeh Fard Tabrizi, Zahra Pourteymour Omidghaemi, Shadi Sharifi, Esmaeel Møller, Simon Geir Jami, Mohammad-Saeid J Otol Review Article The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including βIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc. Chinese PLA General Hospital 2019-09 2019-03-23 /pmc/articles/PMC6712353/ /pubmed/31467504 http://dx.doi.org/10.1016/j.joto.2019.03.001 Text en © 2019 PLA General Hospital Department of Otolaryngology Head and Neck Surgery. Production and hosting by Elsevier (Singapore) Pte Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Article Ghanavatinejad, Fatemeh Fard Tabrizi, Zahra Pourteymour Omidghaemi, Shadi Sharifi, Esmaeel Møller, Simon Geir Jami, Mohammad-Saeid Protein biomarkers of neural system |
title | Protein biomarkers of neural system |
title_full | Protein biomarkers of neural system |
title_fullStr | Protein biomarkers of neural system |
title_full_unstemmed | Protein biomarkers of neural system |
title_short | Protein biomarkers of neural system |
title_sort | protein biomarkers of neural system |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712353/ https://www.ncbi.nlm.nih.gov/pubmed/31467504 http://dx.doi.org/10.1016/j.joto.2019.03.001 |
work_keys_str_mv | AT ghanavatinejadfatemeh proteinbiomarkersofneuralsystem AT fardtabrizizahrapourteymour proteinbiomarkersofneuralsystem AT omidghaemishadi proteinbiomarkersofneuralsystem AT sharifiesmaeel proteinbiomarkersofneuralsystem AT møllersimongeir proteinbiomarkersofneuralsystem AT jamimohammadsaeid proteinbiomarkersofneuralsystem |