Cargando…
Multi-view Subspace Clustering Analysis for Aggregating Multiple Heterogeneous Omics Data
Integration of distinct biological data types could provide a comprehensive view of biological processes or complex diseases. The combinations of molecules responsible for different phenotypes form multiple embedded (expression) subspaces, thus identifying the intrinsic data structure is challenging...
Autores principales: | Shi, Qianqian, Hu, Bing, Zeng, Tao, Zhang, Chuanchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712585/ https://www.ncbi.nlm.nih.gov/pubmed/31497031 http://dx.doi.org/10.3389/fgene.2019.00744 |
Ejemplares similares
-
Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
por: Zhuge, Wenzhang, et al.
Publicado: (2017) -
An Adaptive Sparse Subspace Clustering for Cell Type Identification
por: Zheng, Ruiqing, et al.
Publicado: (2020) -
A self-training subspace clustering algorithm based on adaptive confidence for gene expression data
por: Li, Dan, et al.
Publicado: (2023) -
Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis
por: Lee, Bohyun, et al.
Publicado: (2020) -
Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
por: Zhang, Pei, et al.
Publicado: (2020)