Cargando…
Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis
Arthritis treatment has been challenging because of low drug exposure to the articular cavity. This study was intended to develop hyaluronic acid (HA)-functionalized bilosomes for targeted delivery of tripterine (Tri), an antiphlogistic phytomedicine, to the inflamed joint via ligand-receptor intera...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713218/ https://www.ncbi.nlm.nih.gov/pubmed/31389248 http://dx.doi.org/10.1080/10717544.2019.1636423 |
_version_ | 1783446842059522048 |
---|---|
author | Yang, Hailing Liu, Zhenjie Song, Yonglong Hu, Changjiang |
author_facet | Yang, Hailing Liu, Zhenjie Song, Yonglong Hu, Changjiang |
author_sort | Yang, Hailing |
collection | PubMed |
description | Arthritis treatment has been challenging because of low drug exposure to the articular cavity. This study was intended to develop hyaluronic acid (HA)-functionalized bilosomes for targeted delivery of tripterine (Tri), an antiphlogistic phytomedicine, to the inflamed joint via ligand-receptor interaction. Tri-loaded bilosomes (Tri-BLs) with cationic lipid (DOTAP) were prepared by a thin film hydration method followed by HA coating to form HA@Tri-BLs. HA@Tri-BLs were then characterized by particle size (PS), entrapment efficiency (EE), and structural morphology. The in vitro drug release, hemocompatibility test and cellular uptake were performed to examine the formulation performances of HA@Tri-BLs. The in vivo pharmacokinetics and antiarthritic efficacy were evaluated in arthritic models, respectively. The obtained HA@Tri-BLs possessed a PS of 118.5 nm around with an EE of 99.56%. HA@Tri-BLs exhibited excellent cellular uptake and targeted delivery efficiency for Tri, which resulted in elongation of circulatory residence time and enhancement of intra-arthritic bioavailability (799.9% relative to Tri solution). The in vivo antiarthritic efficacy of HA@Tri-BLs was also significantly superior to uncoated Tri-BLs that gave rise to obvious inflammation resolution. Our findings suggest that HA-functionalized bilosomes are a promising vehicle for articular delivery of antiphlogistic drugs to potentiate their efficacy. |
format | Online Article Text |
id | pubmed-6713218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-67132182019-09-05 Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis Yang, Hailing Liu, Zhenjie Song, Yonglong Hu, Changjiang Drug Deliv Research Article Arthritis treatment has been challenging because of low drug exposure to the articular cavity. This study was intended to develop hyaluronic acid (HA)-functionalized bilosomes for targeted delivery of tripterine (Tri), an antiphlogistic phytomedicine, to the inflamed joint via ligand-receptor interaction. Tri-loaded bilosomes (Tri-BLs) with cationic lipid (DOTAP) were prepared by a thin film hydration method followed by HA coating to form HA@Tri-BLs. HA@Tri-BLs were then characterized by particle size (PS), entrapment efficiency (EE), and structural morphology. The in vitro drug release, hemocompatibility test and cellular uptake were performed to examine the formulation performances of HA@Tri-BLs. The in vivo pharmacokinetics and antiarthritic efficacy were evaluated in arthritic models, respectively. The obtained HA@Tri-BLs possessed a PS of 118.5 nm around with an EE of 99.56%. HA@Tri-BLs exhibited excellent cellular uptake and targeted delivery efficiency for Tri, which resulted in elongation of circulatory residence time and enhancement of intra-arthritic bioavailability (799.9% relative to Tri solution). The in vivo antiarthritic efficacy of HA@Tri-BLs was also significantly superior to uncoated Tri-BLs that gave rise to obvious inflammation resolution. Our findings suggest that HA-functionalized bilosomes are a promising vehicle for articular delivery of antiphlogistic drugs to potentiate their efficacy. Taylor & Francis 2019-08-07 /pmc/articles/PMC6713218/ /pubmed/31389248 http://dx.doi.org/10.1080/10717544.2019.1636423 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Hailing Liu, Zhenjie Song, Yonglong Hu, Changjiang Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
title | Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
title_full | Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
title_fullStr | Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
title_full_unstemmed | Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
title_short | Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
title_sort | hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713218/ https://www.ncbi.nlm.nih.gov/pubmed/31389248 http://dx.doi.org/10.1080/10717544.2019.1636423 |
work_keys_str_mv | AT yanghailing hyaluronicacidfunctionalizedbilosomesfortargeteddeliveryoftripterinetoinflamedareawithenhancivetherapyonarthritis AT liuzhenjie hyaluronicacidfunctionalizedbilosomesfortargeteddeliveryoftripterinetoinflamedareawithenhancivetherapyonarthritis AT songyonglong hyaluronicacidfunctionalizedbilosomesfortargeteddeliveryoftripterinetoinflamedareawithenhancivetherapyonarthritis AT huchangjiang hyaluronicacidfunctionalizedbilosomesfortargeteddeliveryoftripterinetoinflamedareawithenhancivetherapyonarthritis |