Cargando…

A Longitudinal Big Data Approach for Precision Health

Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important too...

Descripción completa

Detalles Bibliográficos
Autores principales: Rose, Sophia Miryam Schüssler-Fiorenza, Contrepois, Kévin, Moneghetti, Kegan J, Zhou, Wenyu, Mishra, Tejaswini, Mataraso, Samson, Dagan-Rosenfeld, Orit, Ganz, Ariel B., Dunn, Jessilyn, Hornburg, Daniel, Rego, Shannon, Perelman, Dalia, Ahadi, Sara, Sailani, M. Reza, Zhou, Yanjiao, Leopold, Shana R., Chen, Jieming, Ashland, Melanie, Christle, Jeffrey W, Avina, Monika, Limcaoco, Pats, Ruiz, Camilo, Tan, Marilyn, Butte, Atul J, Weinstock, George M, Slavich, George M., Sodergren, Erica, McLaughlin, Tracey L., Haddad, Francois, Snyder, Michael P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713274/
https://www.ncbi.nlm.nih.gov/pubmed/31068711
http://dx.doi.org/10.1038/s41591-019-0414-6
_version_ 1783446848430669824
author Rose, Sophia Miryam Schüssler-Fiorenza
Contrepois, Kévin
Moneghetti, Kegan J
Zhou, Wenyu
Mishra, Tejaswini
Mataraso, Samson
Dagan-Rosenfeld, Orit
Ganz, Ariel B.
Dunn, Jessilyn
Hornburg, Daniel
Rego, Shannon
Perelman, Dalia
Ahadi, Sara
Sailani, M. Reza
Zhou, Yanjiao
Leopold, Shana R.
Chen, Jieming
Ashland, Melanie
Christle, Jeffrey W
Avina, Monika
Limcaoco, Pats
Ruiz, Camilo
Tan, Marilyn
Butte, Atul J
Weinstock, George M
Slavich, George M.
Sodergren, Erica
McLaughlin, Tracey L.
Haddad, Francois
Snyder, Michael P
author_facet Rose, Sophia Miryam Schüssler-Fiorenza
Contrepois, Kévin
Moneghetti, Kegan J
Zhou, Wenyu
Mishra, Tejaswini
Mataraso, Samson
Dagan-Rosenfeld, Orit
Ganz, Ariel B.
Dunn, Jessilyn
Hornburg, Daniel
Rego, Shannon
Perelman, Dalia
Ahadi, Sara
Sailani, M. Reza
Zhou, Yanjiao
Leopold, Shana R.
Chen, Jieming
Ashland, Melanie
Christle, Jeffrey W
Avina, Monika
Limcaoco, Pats
Ruiz, Camilo
Tan, Marilyn
Butte, Atul J
Weinstock, George M
Slavich, George M.
Sodergren, Erica
McLaughlin, Tracey L.
Haddad, Francois
Snyder, Michael P
author_sort Rose, Sophia Miryam Schüssler-Fiorenza
collection PubMed
description Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways, and impact behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus (DM). The cohort underwent integrative Personalized Omics Profiling (iPOP) from samples collected quarterly for up to 8 years (median 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome, and wearable monitoring. We discovered over 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance using omics measurements illustrating their potential to replace burdensome tests. Finally, study participation lead the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health.
format Online
Article
Text
id pubmed-6713274
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-67132742019-11-08 A Longitudinal Big Data Approach for Precision Health Rose, Sophia Miryam Schüssler-Fiorenza Contrepois, Kévin Moneghetti, Kegan J Zhou, Wenyu Mishra, Tejaswini Mataraso, Samson Dagan-Rosenfeld, Orit Ganz, Ariel B. Dunn, Jessilyn Hornburg, Daniel Rego, Shannon Perelman, Dalia Ahadi, Sara Sailani, M. Reza Zhou, Yanjiao Leopold, Shana R. Chen, Jieming Ashland, Melanie Christle, Jeffrey W Avina, Monika Limcaoco, Pats Ruiz, Camilo Tan, Marilyn Butte, Atul J Weinstock, George M Slavich, George M. Sodergren, Erica McLaughlin, Tracey L. Haddad, Francois Snyder, Michael P Nat Med Article Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways, and impact behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus (DM). The cohort underwent integrative Personalized Omics Profiling (iPOP) from samples collected quarterly for up to 8 years (median 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome, and wearable monitoring. We discovered over 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance using omics measurements illustrating their potential to replace burdensome tests. Finally, study participation lead the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health. 2019-05-08 2019-05 /pmc/articles/PMC6713274/ /pubmed/31068711 http://dx.doi.org/10.1038/s41591-019-0414-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Rose, Sophia Miryam Schüssler-Fiorenza
Contrepois, Kévin
Moneghetti, Kegan J
Zhou, Wenyu
Mishra, Tejaswini
Mataraso, Samson
Dagan-Rosenfeld, Orit
Ganz, Ariel B.
Dunn, Jessilyn
Hornburg, Daniel
Rego, Shannon
Perelman, Dalia
Ahadi, Sara
Sailani, M. Reza
Zhou, Yanjiao
Leopold, Shana R.
Chen, Jieming
Ashland, Melanie
Christle, Jeffrey W
Avina, Monika
Limcaoco, Pats
Ruiz, Camilo
Tan, Marilyn
Butte, Atul J
Weinstock, George M
Slavich, George M.
Sodergren, Erica
McLaughlin, Tracey L.
Haddad, Francois
Snyder, Michael P
A Longitudinal Big Data Approach for Precision Health
title A Longitudinal Big Data Approach for Precision Health
title_full A Longitudinal Big Data Approach for Precision Health
title_fullStr A Longitudinal Big Data Approach for Precision Health
title_full_unstemmed A Longitudinal Big Data Approach for Precision Health
title_short A Longitudinal Big Data Approach for Precision Health
title_sort longitudinal big data approach for precision health
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713274/
https://www.ncbi.nlm.nih.gov/pubmed/31068711
http://dx.doi.org/10.1038/s41591-019-0414-6
work_keys_str_mv AT rosesophiamiryamschusslerfiorenza alongitudinalbigdataapproachforprecisionhealth
AT contrepoiskevin alongitudinalbigdataapproachforprecisionhealth
AT moneghettikeganj alongitudinalbigdataapproachforprecisionhealth
AT zhouwenyu alongitudinalbigdataapproachforprecisionhealth
AT mishratejaswini alongitudinalbigdataapproachforprecisionhealth
AT matarasosamson alongitudinalbigdataapproachforprecisionhealth
AT daganrosenfeldorit alongitudinalbigdataapproachforprecisionhealth
AT ganzarielb alongitudinalbigdataapproachforprecisionhealth
AT dunnjessilyn alongitudinalbigdataapproachforprecisionhealth
AT hornburgdaniel alongitudinalbigdataapproachforprecisionhealth
AT regoshannon alongitudinalbigdataapproachforprecisionhealth
AT perelmandalia alongitudinalbigdataapproachforprecisionhealth
AT ahadisara alongitudinalbigdataapproachforprecisionhealth
AT sailanimreza alongitudinalbigdataapproachforprecisionhealth
AT zhouyanjiao alongitudinalbigdataapproachforprecisionhealth
AT leopoldshanar alongitudinalbigdataapproachforprecisionhealth
AT chenjieming alongitudinalbigdataapproachforprecisionhealth
AT ashlandmelanie alongitudinalbigdataapproachforprecisionhealth
AT christlejeffreyw alongitudinalbigdataapproachforprecisionhealth
AT avinamonika alongitudinalbigdataapproachforprecisionhealth
AT limcaocopats alongitudinalbigdataapproachforprecisionhealth
AT ruizcamilo alongitudinalbigdataapproachforprecisionhealth
AT tanmarilyn alongitudinalbigdataapproachforprecisionhealth
AT butteatulj alongitudinalbigdataapproachforprecisionhealth
AT weinstockgeorgem alongitudinalbigdataapproachforprecisionhealth
AT slavichgeorgem alongitudinalbigdataapproachforprecisionhealth
AT sodergrenerica alongitudinalbigdataapproachforprecisionhealth
AT mclaughlintraceyl alongitudinalbigdataapproachforprecisionhealth
AT haddadfrancois alongitudinalbigdataapproachforprecisionhealth
AT snydermichaelp alongitudinalbigdataapproachforprecisionhealth
AT rosesophiamiryamschusslerfiorenza longitudinalbigdataapproachforprecisionhealth
AT contrepoiskevin longitudinalbigdataapproachforprecisionhealth
AT moneghettikeganj longitudinalbigdataapproachforprecisionhealth
AT zhouwenyu longitudinalbigdataapproachforprecisionhealth
AT mishratejaswini longitudinalbigdataapproachforprecisionhealth
AT matarasosamson longitudinalbigdataapproachforprecisionhealth
AT daganrosenfeldorit longitudinalbigdataapproachforprecisionhealth
AT ganzarielb longitudinalbigdataapproachforprecisionhealth
AT dunnjessilyn longitudinalbigdataapproachforprecisionhealth
AT hornburgdaniel longitudinalbigdataapproachforprecisionhealth
AT regoshannon longitudinalbigdataapproachforprecisionhealth
AT perelmandalia longitudinalbigdataapproachforprecisionhealth
AT ahadisara longitudinalbigdataapproachforprecisionhealth
AT sailanimreza longitudinalbigdataapproachforprecisionhealth
AT zhouyanjiao longitudinalbigdataapproachforprecisionhealth
AT leopoldshanar longitudinalbigdataapproachforprecisionhealth
AT chenjieming longitudinalbigdataapproachforprecisionhealth
AT ashlandmelanie longitudinalbigdataapproachforprecisionhealth
AT christlejeffreyw longitudinalbigdataapproachforprecisionhealth
AT avinamonika longitudinalbigdataapproachforprecisionhealth
AT limcaocopats longitudinalbigdataapproachforprecisionhealth
AT ruizcamilo longitudinalbigdataapproachforprecisionhealth
AT tanmarilyn longitudinalbigdataapproachforprecisionhealth
AT butteatulj longitudinalbigdataapproachforprecisionhealth
AT weinstockgeorgem longitudinalbigdataapproachforprecisionhealth
AT slavichgeorgem longitudinalbigdataapproachforprecisionhealth
AT sodergrenerica longitudinalbigdataapproachforprecisionhealth
AT mclaughlintraceyl longitudinalbigdataapproachforprecisionhealth
AT haddadfrancois longitudinalbigdataapproachforprecisionhealth
AT snydermichaelp longitudinalbigdataapproachforprecisionhealth