Cargando…
A Longitudinal Big Data Approach for Precision Health
Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important too...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713274/ https://www.ncbi.nlm.nih.gov/pubmed/31068711 http://dx.doi.org/10.1038/s41591-019-0414-6 |
_version_ | 1783446848430669824 |
---|---|
author | Rose, Sophia Miryam Schüssler-Fiorenza Contrepois, Kévin Moneghetti, Kegan J Zhou, Wenyu Mishra, Tejaswini Mataraso, Samson Dagan-Rosenfeld, Orit Ganz, Ariel B. Dunn, Jessilyn Hornburg, Daniel Rego, Shannon Perelman, Dalia Ahadi, Sara Sailani, M. Reza Zhou, Yanjiao Leopold, Shana R. Chen, Jieming Ashland, Melanie Christle, Jeffrey W Avina, Monika Limcaoco, Pats Ruiz, Camilo Tan, Marilyn Butte, Atul J Weinstock, George M Slavich, George M. Sodergren, Erica McLaughlin, Tracey L. Haddad, Francois Snyder, Michael P |
author_facet | Rose, Sophia Miryam Schüssler-Fiorenza Contrepois, Kévin Moneghetti, Kegan J Zhou, Wenyu Mishra, Tejaswini Mataraso, Samson Dagan-Rosenfeld, Orit Ganz, Ariel B. Dunn, Jessilyn Hornburg, Daniel Rego, Shannon Perelman, Dalia Ahadi, Sara Sailani, M. Reza Zhou, Yanjiao Leopold, Shana R. Chen, Jieming Ashland, Melanie Christle, Jeffrey W Avina, Monika Limcaoco, Pats Ruiz, Camilo Tan, Marilyn Butte, Atul J Weinstock, George M Slavich, George M. Sodergren, Erica McLaughlin, Tracey L. Haddad, Francois Snyder, Michael P |
author_sort | Rose, Sophia Miryam Schüssler-Fiorenza |
collection | PubMed |
description | Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways, and impact behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus (DM). The cohort underwent integrative Personalized Omics Profiling (iPOP) from samples collected quarterly for up to 8 years (median 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome, and wearable monitoring. We discovered over 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance using omics measurements illustrating their potential to replace burdensome tests. Finally, study participation lead the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health. |
format | Online Article Text |
id | pubmed-6713274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67132742019-11-08 A Longitudinal Big Data Approach for Precision Health Rose, Sophia Miryam Schüssler-Fiorenza Contrepois, Kévin Moneghetti, Kegan J Zhou, Wenyu Mishra, Tejaswini Mataraso, Samson Dagan-Rosenfeld, Orit Ganz, Ariel B. Dunn, Jessilyn Hornburg, Daniel Rego, Shannon Perelman, Dalia Ahadi, Sara Sailani, M. Reza Zhou, Yanjiao Leopold, Shana R. Chen, Jieming Ashland, Melanie Christle, Jeffrey W Avina, Monika Limcaoco, Pats Ruiz, Camilo Tan, Marilyn Butte, Atul J Weinstock, George M Slavich, George M. Sodergren, Erica McLaughlin, Tracey L. Haddad, Francois Snyder, Michael P Nat Med Article Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways, and impact behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus (DM). The cohort underwent integrative Personalized Omics Profiling (iPOP) from samples collected quarterly for up to 8 years (median 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome, and wearable monitoring. We discovered over 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance using omics measurements illustrating their potential to replace burdensome tests. Finally, study participation lead the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health. 2019-05-08 2019-05 /pmc/articles/PMC6713274/ /pubmed/31068711 http://dx.doi.org/10.1038/s41591-019-0414-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Rose, Sophia Miryam Schüssler-Fiorenza Contrepois, Kévin Moneghetti, Kegan J Zhou, Wenyu Mishra, Tejaswini Mataraso, Samson Dagan-Rosenfeld, Orit Ganz, Ariel B. Dunn, Jessilyn Hornburg, Daniel Rego, Shannon Perelman, Dalia Ahadi, Sara Sailani, M. Reza Zhou, Yanjiao Leopold, Shana R. Chen, Jieming Ashland, Melanie Christle, Jeffrey W Avina, Monika Limcaoco, Pats Ruiz, Camilo Tan, Marilyn Butte, Atul J Weinstock, George M Slavich, George M. Sodergren, Erica McLaughlin, Tracey L. Haddad, Francois Snyder, Michael P A Longitudinal Big Data Approach for Precision Health |
title | A Longitudinal Big Data Approach for Precision Health |
title_full | A Longitudinal Big Data Approach for Precision Health |
title_fullStr | A Longitudinal Big Data Approach for Precision Health |
title_full_unstemmed | A Longitudinal Big Data Approach for Precision Health |
title_short | A Longitudinal Big Data Approach for Precision Health |
title_sort | longitudinal big data approach for precision health |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713274/ https://www.ncbi.nlm.nih.gov/pubmed/31068711 http://dx.doi.org/10.1038/s41591-019-0414-6 |
work_keys_str_mv | AT rosesophiamiryamschusslerfiorenza alongitudinalbigdataapproachforprecisionhealth AT contrepoiskevin alongitudinalbigdataapproachforprecisionhealth AT moneghettikeganj alongitudinalbigdataapproachforprecisionhealth AT zhouwenyu alongitudinalbigdataapproachforprecisionhealth AT mishratejaswini alongitudinalbigdataapproachforprecisionhealth AT matarasosamson alongitudinalbigdataapproachforprecisionhealth AT daganrosenfeldorit alongitudinalbigdataapproachforprecisionhealth AT ganzarielb alongitudinalbigdataapproachforprecisionhealth AT dunnjessilyn alongitudinalbigdataapproachforprecisionhealth AT hornburgdaniel alongitudinalbigdataapproachforprecisionhealth AT regoshannon alongitudinalbigdataapproachforprecisionhealth AT perelmandalia alongitudinalbigdataapproachforprecisionhealth AT ahadisara alongitudinalbigdataapproachforprecisionhealth AT sailanimreza alongitudinalbigdataapproachforprecisionhealth AT zhouyanjiao alongitudinalbigdataapproachforprecisionhealth AT leopoldshanar alongitudinalbigdataapproachforprecisionhealth AT chenjieming alongitudinalbigdataapproachforprecisionhealth AT ashlandmelanie alongitudinalbigdataapproachforprecisionhealth AT christlejeffreyw alongitudinalbigdataapproachforprecisionhealth AT avinamonika alongitudinalbigdataapproachforprecisionhealth AT limcaocopats alongitudinalbigdataapproachforprecisionhealth AT ruizcamilo alongitudinalbigdataapproachforprecisionhealth AT tanmarilyn alongitudinalbigdataapproachforprecisionhealth AT butteatulj alongitudinalbigdataapproachforprecisionhealth AT weinstockgeorgem alongitudinalbigdataapproachforprecisionhealth AT slavichgeorgem alongitudinalbigdataapproachforprecisionhealth AT sodergrenerica alongitudinalbigdataapproachforprecisionhealth AT mclaughlintraceyl alongitudinalbigdataapproachforprecisionhealth AT haddadfrancois alongitudinalbigdataapproachforprecisionhealth AT snydermichaelp alongitudinalbigdataapproachforprecisionhealth AT rosesophiamiryamschusslerfiorenza longitudinalbigdataapproachforprecisionhealth AT contrepoiskevin longitudinalbigdataapproachforprecisionhealth AT moneghettikeganj longitudinalbigdataapproachforprecisionhealth AT zhouwenyu longitudinalbigdataapproachforprecisionhealth AT mishratejaswini longitudinalbigdataapproachforprecisionhealth AT matarasosamson longitudinalbigdataapproachforprecisionhealth AT daganrosenfeldorit longitudinalbigdataapproachforprecisionhealth AT ganzarielb longitudinalbigdataapproachforprecisionhealth AT dunnjessilyn longitudinalbigdataapproachforprecisionhealth AT hornburgdaniel longitudinalbigdataapproachforprecisionhealth AT regoshannon longitudinalbigdataapproachforprecisionhealth AT perelmandalia longitudinalbigdataapproachforprecisionhealth AT ahadisara longitudinalbigdataapproachforprecisionhealth AT sailanimreza longitudinalbigdataapproachforprecisionhealth AT zhouyanjiao longitudinalbigdataapproachforprecisionhealth AT leopoldshanar longitudinalbigdataapproachforprecisionhealth AT chenjieming longitudinalbigdataapproachforprecisionhealth AT ashlandmelanie longitudinalbigdataapproachforprecisionhealth AT christlejeffreyw longitudinalbigdataapproachforprecisionhealth AT avinamonika longitudinalbigdataapproachforprecisionhealth AT limcaocopats longitudinalbigdataapproachforprecisionhealth AT ruizcamilo longitudinalbigdataapproachforprecisionhealth AT tanmarilyn longitudinalbigdataapproachforprecisionhealth AT butteatulj longitudinalbigdataapproachforprecisionhealth AT weinstockgeorgem longitudinalbigdataapproachforprecisionhealth AT slavichgeorgem longitudinalbigdataapproachforprecisionhealth AT sodergrenerica longitudinalbigdataapproachforprecisionhealth AT mclaughlintraceyl longitudinalbigdataapproachforprecisionhealth AT haddadfrancois longitudinalbigdataapproachforprecisionhealth AT snydermichaelp longitudinalbigdataapproachforprecisionhealth |